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Parallelism as a Factor in Metrical Analysis

DAVID TEMPERLEY & CHRISTOPHER BARTLETTE
Eastman School of Music

A model is proposed of the effect of parallelism on meter It is well-
known that repeated patterns of pitch and rhythm can affect the percep-
tion of metrical structure. However, few attempts have been made either
to define parallelism precisely or to characterize its effect on metrical
analysis. The basic idea of the current model is that a repeated melodic
pattern favors a metrical structure in which beats are placed at parallel
points in each occurrence of the pattern. By this view, parallelism affects
the period of the metrical structure (the distance between beats) rather
than the phase (exactly where the beats occur). This model is imple-
mented and incorporated into the metrical program of D. Temperley and
D. Sleator (1999). Several examples of the model’s output are presented;
we examine problems with the model and discuss possible solutions.
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O NE of the most widely studied problems in music cognition is the prob-
lem of metrical analysis or “beat-finding”: inferring the metrical struc-
ture from a piece of music. A large number of studies have focused on this
issue, reflecting a variety of approaches, aims, and ways of defining the
problem (Allen & Dannenberg, 1990; Chafe, Mont-Reynaud & Rush, 1982;
Desain & Honing, 1992; Large & Kolen, 1994; Lee, 1991; Longuet-Higgins
& Steedman, 1971; Parncutt, 1994; Povel & Essens, 1985; Rosenthal, 1992;
Tanguiane, 1993; Temperley & Sleator, 1999; Todd, 1994). Some researchers
have assumed an input that is completely regular or “quantized” (Longuet-
Higgins & Steedman, 1971; Povel & Essens, 1985); others have sought to
accommodate the fluctuations in pulse that are characteristic of performed
music (Large & Kolen, 1994; Rosenthal, 1992).! Some researchers have
sought to model the process of inducing a beat as a piece unfolds in left-to-

1. The great majority of metrical models operate on “note” information, although a few
have attempted to handle actual acoustic input (Tanguiane, 1993; Todd, 1994).
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right fashion (Lee, 1991; Longuet-Higgins & Steedman, 1971), while oth-
ers have focused on producing the preferred metrical structure given the
entire piece (Rosenthal, 1992; Temperley & Sleator, 1999). Some models
have produced just a single level of beats, while others have generated a
complete “metrical structure” of several levels. In terms of approach, some
studies have worked within the rule-based paradigm of classical artificial
intelligence (Lee, 1991; Longuet-Higgins & Steedman, 1971); others have
applied connectionist techniques (Desain & Honing, 1992; Large & Kolen,
1994), and still others have adopted a “preference-rule” approach (the cur-
rent study is in this category, as will be explained later). At a still more
fundamental level, perhaps, we might distinguish between psychologically
oriented studies, seeking to model how human listeners perform metrical
analysis (and perhaps considering psychological evidence bearing on this
question), and studies that approach the subject from an artificial-intelli-
gence or engineering viewpoint, seeking to solve the problem by whatever
means seems most elegant and effective—though of course these two aims
are closely related and often convergent.?

Despite these differences, there is considerable agreement on one impor-
tant issue, namely, the factors or criteria that are involved in the determina-
tion of metrical structure. Three criteria are universally accepted and are
incorporated in one way or another in virtually all models of meter. First,
there is a preference for beats to coincide with notes (or, more precisely,
onsets of notes). Second, there is a preference for aligning beats with longer
notes. (For psychological evidence on these points, see Povel & Essens,
1985.) Let us consider the problem of deriving just a single level of beats
(Figure 1). We would favor hearing A over hearing B, because the former
aligns beats with more notes; we favor hearing A over hearing C, although
every beat coincides with a note in both hearings, because the notes hit by
hearing A are (on balance) longer than those hit by hearing C. Third, there
is a preference for regularity of beats—whether this regularity is assumed
to be perfect (in the case of models assuming “quantized” input) or imper-
fect, as in the case of more naturalistic models. In Figure 1, for example, we
would strongly resist an analysis such as hearing D, which began with beats
on every third sixteenth-note beat and then switched to every fourth one.
Although developing a model of meter incorporating these three simple
criteria might seem like a straightforward task, in fact it is not; finding the
correct operational definition of each criterion, and the optimal balance
between them, has proven to be a formidable challenge (as indicated by the
large amount of work that has been devoted to it). The difficulties only
increase when the problem is expanded to include polyphonic as well as

2. Although some studies embrace either the psychological goal (Parncutt, 1994; Povel
& Essens, 1985) or the engineering goal (Chafe et al., 1982), others embrace both goals
(Rosenthal, 1992) or remain noncommittal between them (Longuet-Higgins & Steedman,
1971). Our own stance on this issue will be clarified latex
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Fig. 1. Bach, Partita for Violin in D minor, Allemande, measure 1, showing four possible
metrical analyses.

monophonic music—something that very few models of meter have done
(the model of Temperley and Sleator, 1999, is one exception).

Besides the three criteria of note onsets, note length, and regularity, stu-
dents of metrical analysis have identified several other factors that are in-
volved in the perception of meter. One is grouping: when a series of notes
form a group or phrase, there is a tendency to hear the strongest beat near
the beginning of the group (Povel & Essens, 1985). In Figure 1, for ex-
ample, if we take as given the notated quarter-note beat (Analysis A), we
tend to hear the odd-numbered beats (the first and third) as stronger than
the even-numbered ones (the second and fourth); this is because the first
beat is closer than the second to the beginning of the phrase. Another fac-
tor is harmony: we prefer to hear beats at points of harmonic change
(Temperley, 2001). In Figure 2, the fairly clear change of harmony at each
notated downbeat is a strong factor favoring these points as strong beats.
Both grouping and harmony are problematic because of their interactive
relationship with meter; meter is a factor in both grouping and harmonic
structure as well as being influenced by them (see Temperley, 2001, for
discussion). Intensity (loudness) and melodic accent (i.e. factors of melodic
shape or contour) also play some role in metrical analysis, although these
factors appear to be fairly minor.?
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Fig. 2. Bach, Suite for Violoncello in G major, Minuet II, measures 1-8.

3. Regarding intensity, a study of performance expression by Drake and Palmer (1993)
suggests that the difference in loudness between metrically strong and weak events tends to
be quite small. Regarding melodic accent, several definitions of this concept have been
proposed; however, in a study of these, Huron and Royal (1996) found that none had more
than a small correlation with metrical strength as indicated in musical scores.
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A further factor in metrical analysis, and the subject of the current study,
is parallelism: the effect of repeated patterns on the perception of meter. A
clear and compelling example of the role of parallelism in meter is the
opening of Beethoven’s Moonlight Sonata (Op. 27, No. 2), shown in Fig-
ure 3. The obvious hearing of this pattern features a strong beat on the first
chord, followed by beats at every third subsequent note. Although the strong
beat on the first chord could be explained by the note-onset criterion (fa-
voring beats at points of several note onsets as opposed to just one), what
accounts for the hearing of beats on subsequent G#s? One might attribute
this to some inherent feature of the pattern, for example, the fact that the
G#’s are lowest in register. However, if one imagines the three-note pattern
repeating indefinitely (without the left-hand part), it is quite easy to hear it
with the accents on the E’s, or even on the C#’s. Rather, the metrical accen-
tuation of the G#’s appears to be due to the fact that a melodic pattern is
present here; given that the first instance of the pattern is clearly accented
in a certain way, we tend to impose the same accentuation on subsequent
instances as well.

In examining the effect of parallelism on meter, we must be careful to
isolate it from other factors. Consider Figure 4; we certainly hear a paral-
lelism here between the first three quarter-note beats and the second three,
and one might suppose that this favors a hearing of triple meter. (Note that
in this example, the melodic pattern is not repeated exactly, but is trans-
posed down a step—a frequent occurrence in cases of parallelism, as we
will see.) In this case, however, the triple meter hearing can quite easily be
accounted for by other factors: in particular, the large chords on the first
and fourth beats encourage us to hear them as metrically strong. The effect
of parallelism on meter is demonstrated most clearly in cases, like the Moon-
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Fig. 3. Beethoven, Sonata Op. 27 No. 2, [, measures 1-2.

)3

v 3

b EJ be DJ

T

T
d i
I 1
[

. -

Fig. 4. Bach, Suite for Violoncello in C major, Sarabande, measures 1-2.
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Parallelism as a Factor in Metrical Analysis 121

light Sonata, where the internal structure of the pattern itself does not fa-
vor any position as metrically strong.

In what follows, we will propose a model of parallelism and its role in
metrical analysis. Although our methods in this study are computational,
our larger interest is cognitive: by approaching parallelism from a compu-
tational viewpoint, we hope to gain insight into how it might be repre-
sented psychologically. (We will return to this larger issue in the final sec-
tion of the article.) Our concern will be with “common-practice”
music— Western art music of the 18th and 19th centuries; whether paral-
lelism and its effect on meter differ significantly in other musical idioms is
a question beyond our scope. We will begin by considering some other
research relating to parallelism and meter.

Earlier Models of Parallelism and Meter

Among the computational studies discussed earlier, very few have at-
tempted to model the effect of parallelism on meter; indeed, little attention
has been given to the modeling of parallelism (repeated patterns within a
piece) in general. However, two models do require discussion. The model
of Steedman (1977) builds on the earlier metrical algorithm of Longuet-
Higgins and Steedman (1971). This model analyzes a piece in a left-to-right
fashion; it assumes a “quantized” input (in which all durations are repre-
sented as multiples of a low-level beat). It starts by generating a single
metrical level (often the metrical level implied by the length of the first
note, although not always), and then generates higher levels based on cer-
tain cues— for example, a long-short-short (“dactyl”) pattern tends to im-
ply a strong beat at its beginning.

In Steedman’s extended version of this model, repetition is taken into
account in the following way. If a pattern beginning on a beat B1 is then
repeated beginning on a following beat B2, a new metrical level is estab-
lished with beats at B1 and B2. Consider Figure 5 (one of Steedman’s ex-
amples). The model first establishes the sixteenth-note level (as in Longuet-
Higgins & Steedman’s model). Proceeding to the right, when it gets to the
sixth note it realizes that notes 4—6 are parallel to notes 1-3 (i.e., similar in
intervallic pattern); this leads it to establish a new, dotted-eighth metrical
level with beats at note 1 and note 4. The model then adopts this dotted-

Fig. 5. Bach, Well-Tempered Clavier Book 11, Fugue No. 4, measures 1-2.
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eighth metrical level as its basic unit; from then on, it considers and com-
pares only “bites” beginning at each dotted-eighth beat. It finds that notes
13-15 are parallel to notes 1-3, leading to a higher (dotted-whole-note)
metrical level with beats at notes 1 and 13.

An important feature of the Longuet-Higgins/Steedman model (and
Steedman’s extended version) is what Steedman calls the “principle of con-
sistency”: once a metrical level is established, it cannot be abandoned. Es-
sentially, this assumes that syncopations—for example, long notes on weak
beats—will never occur until the correct meter has been firmly established.
Although this principle appears to hold up well for Bach fugues, it does not
always apply; certainly there are cases where we seem to “revise” our ini-
tial metrical analysis of the first few events of a piece based on subsequent
evidence (see Jackendoff, 1991, and Temperley, 2001, for discussion and
examples). Another problem should also be mentioned, relating specifi-
cally to Steedman’s parallelism model. Steedman correctly observes that,
given a repetition of a pattern, we tend to assume that “the metrical accent
will fall at the same point in both figure and repeat” (1977, p. 560)—this is
the same point made earlier in connection with the Moonlight Sonata. This
implies a metrical level whose beat interval is the same as the distance be-
tween corresponding points in the figure and the repeat. However, Steedman
then goes further to assume that beats are located at the beginning of the
figure and the repeat. In effect, Steedman suggests that the parallelism de-
termines not only the period but also the phase of the metrical level. Figure
6 shows a case where this assumption is problematic: we clearly hear the
repeated rhythmic and intervallic pattern in the melody (marked as motive
X), and this is surely a factor in our perception of the meter. Yet each
occurrence of the pattern begins just after a quarter-note beat, rather than
on the beat. It seems to us that Steedman’s model would incorrectly label
the beginning of each X motive as a strong beat, thus correctly inferring a
quarter-note level of meter but misidentifying the phase.* An alternative
solution is to assume that parallelism determines only the period of a met-
rical level (the distance between beats), not the phase (where exactly the

Fig. 6. Bach, Suite for Violoncello in C major, Allemande, measures 1-2.

4. It is also possible that Steedman’s model would have already committed to the correct
eighth-note level by this point (given the dactyl in notes 4, 5, and 6); it would therefore not
even consider pattern X, as this begins on a weak sixteenth-note beat. Of course, this result
is not satisfactory either.
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Parallelism as a Factor in Metrical Analysis 123

beats occur); the phase, rather, depends on the location of “phenomenal
accents” —long notes, loud notes, changes of harmony, and so on. In the
case of the Moonlight Sonata, for example (Figure 3), the three-note me-
lodic pattern suggests only that strong beats are three notes apart; the exact
placement of these beats is determined in this case by the left-hand octave,
adding a strong accent to the first note of the first pattern instance and thus
(by parallelism) of all subsequent instances as well.’

A further study deserving discussion is Mont-Reynaud and Goldstein’s
(1985) model of rhythmic pattern recognition. The focus of this study is
not on the role of parallelism in meter (though it does discuss this role in a
general way), but rather, on parallelism itself: a model is proposed which
searches for melodic patterns in a piece.® Given a piece represented as a
sequence of symbols (notes), the model looks at each range of notes within
the sequence, and compares it, essentially, with every other range of the
same size. It “grows” patterns recursively, first looking for two-note pat-
terns, then expanding to three-note patterns where possible (on the reason-
ing that a repeating three-note pattern ABC must be built on a two-note
pattern AB), and so on. An additional step is then needed of eliminating
redundant patterns. In the case above, for example, the model would first
find ABC and BC independently and would then realize on a second pass that
BC is redundant. The authors then consider the question of elaboration—how
to identify cases where one pattern is an elaborated version of another.

Mont-Reynaud and Goldstein’s method of pattern recognition is more
exhaustive than Steedman’s, and it seems to offer an effective approach to
finding all significant patterns that occur within a piece. The problem of
redundant patterns is a difficult one and greatly increases the amount of
computation necessary. If a pattern exists of symbols N, -N,, the program
will also independently find N N N-NLLN-N, then ehmlnatlng all but
the first (and longest) pattern. Another problem with this approach arises
with self-overlapping patterns such as ABCABCABCABC. Presumably
Mont-Reynaud and Goldstein’s model would identify ABC as a repeated

5. The distinction between period and phase is nicely illustrated by cases where the
period of the meter is clear but the phase is not. One famous example of this is the opening
of Beethoven’s Sonata Op. 14 No. 2, [; a repeated pattern in both melody and accompani-
ment makes it clear that some kind of half-note beat level is present, but it is not clear where
the beats occur, leaving the passage metrically ambiguous.

Another metrical model that appears to have incorporated parallelismis that of Rosenthal
(1992). Rosenthal says that his model prefers analyses that “subdivide the performance in a
motivically plausible manner,” such that “a recurring motive will occupy the same position
in the measures in which it occurs” (1992, p. 70). However, no explanation is given of how
this is formalized or implemented.

6. The authors focus mainly on rhythmic patterns, but the possibility of applying their
method to pitch patterns is also discussed.

Two other interesting models of melodic pattern recognition, Rolland (1999} and
Cambouropoulos (2001), came to our attention too late to be included in this discussion.
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pattern, but also BCA and CAB—again leading to considerable redundancy.
This redundancy might be useful for some purposes; for example, when it
is necessary to explicitly identify what the “motives” are in a piece, then all
three possibilities (ABC, BCA, and CAB) would have to be considered and
evaluated. For the purpose of modeling the effect of parallelism on meter,
however, all of this may be unnecessary. What is important here is simply
that there is a repetition at a distance of three notes (it doesn’t matter which
note the pattern is thought to start on), implying a metrical level with the
same period. In the following model, we will propose a way of identifying
such repetitions which does not depend on the explicit identification of
motives.

Turning to the experimental psychological literature, we find little that
bears directly on the role of parallelism in metrical analysis. An important
study concerning parallelism itself is that of Deutsch (1980). Trained lis-
teners were played melodies and asked to write them down; some melo-
dies featured repeating three-note or four-note patterns (e.g., Figure 7a),
while others did not (e.g., Figure 7b). Listeners were able to learn the pat-
terned melodies much more easily than the unpatterned ones. Deutsch also
found that rhythm plays a role in the perception of parallelism; a pitch
pattern can be learned much more easily when combined with a rhythmic
pattern that supports the pitch pattern rather than conflicting with it. (Simi-
lar results have also been obtained by Handel, 1973, and Boltz and Jones,
1986.) Such studies certainly show the psychological reality of parallelism
and also show an important perceptual role for it: it aids in the encoding
and memorization of music. However, they tell us little about the role of
parallelism in metrical analysis. (We would guess that parallelism did af-
fect metrical analysis in these cases; undoubtedly, listeners tended to infer
a metrical structure that was parallel with the repeated pattern, for ex-
ample, inferring strong beats on every third note in Figure 7a. But this
issue is not directly addressed by these studies.) Thus, while studies by
Deutsch and others provide strong evidence for the psychological reality
of parallelism itself, the role of parallelism in metrical analysis remains to
be explored.”

Fig. 7. Melodies that contain repeated patterns (A) are more easily learned than melodies
that do not (B). From Deutsch (1980).

7. Deutsch and Feroe (1981) also propose a model for the encoding of repeated patterns
in music; however, they offer no proposal for how such encodings are formed—or, for
example, why one encoding is preferred over another.
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A Preference Rule Model of Meter

The current proposal builds on a computational model of meter that is
described elsewhere (Temperley, 2001; Temperley & Sleator, 1999). This
model is designed to handle unquantized (performance-generated) input as
well as quantized; it is also designed for polyphonic input. The input as-
sumed is a list of notes, giving the ontime and offtime (in milliseconds) and
pitch of each note. The program begins by quantizing all event ontimes and
offtimes to time-points called “pips,” spaced 35 ms apart; only pips are
considered as possible beat locations.?

The output of the system is a framework of levels of beats. The system
begins by generating a main beat or “tactus” level; it then generates two
lower and two upper levels. (We adopt the convention of calling the tactus
level 2, upper levels 3 and 4, and lower levels 1 and 0.) The system’s output
consists of a note list (containing the notes as originally inputted, except
quantized to pips) and a beat list, with each beat having a time point and a
level number (the highest level at which that beat is present; see Figure 8).

The operation of the model is based on “preference rules” —an approach
to musical analysis first proposed by Lerdahl and Jackendoff (1983).° In a
preference rule system, a large set of possible (“well-formed”) analyses are
considered and evaluated by certain criteria; the preferred analysis is the
one best satisfying the criteria. In the current case, the well-formedness con-
straints state that for each pair of adjacent beat levels, every beat at the higher
level must also be a beat at the lower one, and exactly one or two lower-level
beats must elapse between each pair of higher-level beats. For the tactus level
(since it is generated first), the only well-formedness constraint is that intervals
between adjacent beats are limited to a range of 400 ms to 1600 ms.

The system has three main preference rules, which are exactly the prin-
ciples described earlier as the essential criteria of metrical analysis.

Event Rule: Prefer to locate beats (especially strong beats) at onsets of
events; the more events at a timepoint, the better a beat location it is.

Length Rule: Prefer to locate beats at the onsets of long events.

8. Like other parameters of the program, the value of 35 ms was found to be optimal
through trial and error. Quantization to pips is desirable from a computational viewpoint
(because the speed of the program depends on the number of beat locations that must be
considered), but there is a more musically substantive reason for it as well. In live perfor-
mance, notes that are intended (and understood) to be exactly simultaneous are often not
played that way; by quantizing to pips, the program attempts to make such notes exactly
simultaneous.

9. Lerdahl and Jackendoff’s model of meter incorporates parallelism as a factor; how-
ever, they make no attempt to define parallelism rigorously, or to precisely characterize its
effect on meter.
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Note 0 225 55
Note 225 450 57
Note 450 675 59
Note 675 900 60
Note 200 1012 59

Note 1012 1125 57
Note 1125 1350 55

Meter program (reads in
note list, adds beats)

l

Note 0 210 55
Note 210 455 57
Note 455 665 59
Note 665 900 60
Beat 0 1
Beat 105 O
Beat 210 2
Beat 315 0

Fig. 8. The input and output of the meter program. “Note” statements consist of an ontime
and an offtime (both in milliseconds) and a pitch; “Beat” statements consist of a time point
(in milliseconds) and a level number.

In calculating the “length” of a note, the program uses what Temperley
and Sleator (1999) call its “registral interonset interval”: the time interval
to the onset of the next note within the same register, which is defined as a
range of 9 semitones above or below. The length of a note is then defined as
the maximum of its actual duration and its registral interonset interval.

Regularity Rule: Prefer for beats at each level to be roughly equally
spaced.

At the tactus level, regularity is measured by comparing each beat interval
with the previous beat interval and imposing a penalty proportional to the
difference between them (the enforcement of regularity at other levels will
be discussed later). Although gross irregularities are highly penalized by
the regularity rule, small tempo fluctuations of the kind that often occur in
performance are penalized only very slightly.
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Consider just the tactus level. Any analysis at this level (that is to say,
any row of beats) can be evaluated by using the three preference rules just
given. Each rule assigns a numerical score indicating how well it is satisfied
by the analysis; the preferred analysis overall is the one with the highest
total score. For the event rule and length rule, the score reflects the number
of events aligned with beats under the analysis as well as their lengths (ad-
justing for the fact that analyses with more beats will hit more events).
Consider Figure 1 again: Analysis A is preferred over Analysis B, as it aligns
more beats with event onsets. (The event rule also favors Analysis A over
many other possible analyses—not shown—in which few or none of the
beats coincide with event onsets.) Analysis A and Analysis C are equally
preferred by the event rule, but the length rule favors Analysis A because
the events coinciding with beats in Analysis A are longer that in Analysis C.
Finally, Analysis D is penalized by the regularity rule, as the beats are not
regular. Of the four analyses above, then, Analysis A would be preferred.

Because of the regularity rule, the optimal analysis for a short segment
of a piece may depend on what happens elsewhere (either before or after-
wards). This is why the model must consider complete analyses of a piece,
rather than evaluating small segments in isolation. However, the number
of possible analyses grows exponentially with the number of possible beat
locations in the piece. A more intelligent search procedure is needed to find
the best-scoring analysis. This search procedure is not our primary concern
here, though we will return to it briefly later; for further discussion, see
Temperley (2001).

At levels above and below the tactus, the event and length rule operate
in exactly the same way. The regularity rule operates rather differently;
here, penalties are imposed for changes in relationships between levels,
rather than changes in absolute beat intervals. For example, if one pair of
tactus beats is divided duply at the next level down, and the next triply, a
penalty is imposed.

The model also incorporates two other weak criteria. In selecting the
highest level, the model prefers to locate the first highest-level beat near the
beginning of the piece (on the first beat of the next level down, rather than
the second or third). Second, the model slightly favors duple over triple
relationships between levels. The model also has the capability of using
harmonic information to guide metrical analysis (preferring beats at points
of harmonic change), but this must be provided in the input; this feature is
not used in the “standard” version of the program assumed here.

The model as just described was tested on a systematically chosen cor-
pus of polyphonic excerpts from the Kostka-Payne theory workbook (Kostka
& Payne, 1995). Using quantized inputs generated precisely from a score,
the model labeled tactus level beats correctly in 94% of measures and
achieved slightly lower rates (86-94%) for all other levels. Using inputs
generated from performances by a skilled pianist (a doctoral student in
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piano at Ohio State University) on a MIDI keyboard, the program labeled
tactus beats correctly in 85% of measures and achieved rates of 71-86%
for other levels. (See Temperley, 2001, for further details about these tests.)
The tests just described indicate that the model, while showing promise,
has considerable room for improvement. The limitations of the model can
be demonstrated informally as well; examples can easily be found in which
the criteria available to the model are clearly insufficient to yield the cor-
rect analysis. The Moonlight Sonata is one case (Figure 3). The triple meter
of this passage is immediately evident, as opposed to —for example —a duple
meter assigning strong beats to every second note. However, it can be seen
that none of the rules of the model (as stated earlier) confer an advantage
to the triple analysis over the duple one. (The event rule favors a beat on
the first note, but says nothing about where subsequent beats occur; the
regularity rule favors some kind of regular pattern of beats, but is indiffer-
ent between a duple or triple grouping.) Figure 5 provides a similar ex-
ample. In general, it can be seen that any sequence of isochronous (same-
duration) notes is likely to be highly metrically ambiguous to the model; it
will have little basis for choosing one analysis over another. In such cases, it
tends to simply choose the fastest tactus level within its allowable range
(400-1600 ms), which may lead to the correct choice but often will not.

Characterizing Parallelism

We now present a model of parallelism and its effect on meter. The model
described here analyzes a piece for parallelism and then incorporates this
information into the metrical analysis process described in the preceding
section. (The model is capable of handling monophonic inputs only; we
will return briefly to the problem of polyphonic music later on.) The prob-
lem can be decomposed into two subproblems: (1) How do we character-
ize parallelism — what is parallelism, exactly—and how do we search for it
in a piece? (2) How do we use this information as input to metrical analy-
sis? These two problems are the subject of this section and the next.

We have established that parallelism involves some kind of repetition.
But repetition of what? Certainly parallelism can involve an exact repeti-
tion of a sequence of notes, as seen in the Moonlight Sonata. However, it
can also involve repetition of an intervallic pattern at different pitch lev-
els—what is sometimes known as a “sequence.” This is seen, for example,
in Figures 4, 5, and 6. In Figures § and 6, a pattern is shifted along a
diatonic (major or minor) scale; in such cases, the pattern is repeated in
terms of intervals on the scale, but not necessarily in terms of chromatic
intervals (i.e. number of half-steps). (In Figure 5, the first three-note motive
features chromatic intervals of -1 +1, and the second features -2 +2.) On
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the other hand, sequences can also occur where a chromatic intervallic
pattern is repeated exactly; the melody of Figure 4 offers an example of
this, where a pattern of 0 -3 +2 in measure 1 is repeated (transposed down
two chromatic steps) in measure 2. Parallelism can also involve a repetition
of contour: the pattern of ups and downs in a melody. In Figure 9, a three-
note pattern is clearly evident in the first three measures, though it can be
seen that the chromatic intervals vary from one pattern instance to the next
and even the diatonic intervals vary. In terms of diatonic intervals, the first
instance (G-Bb-G) features +2 -2, whereas the second (D-G-D) features +3 -
3. Clearly, parallelisms of this kind must be allowed for as well. Intuitively,
it seems that exact repetition and intervallic repetition (sequences) are the
strongest form of parallelism, followed by contour repetition, followed by
rhythmic repetition. (We are assuming that cases of intervallic repetition
and contour repetition involve rhythmic repetition as well. This is gener-
ally the assumption in musical parlance; to speak of a sequence generally
implies that the rhythmic pattern is repeated along with the intervallic pat-
tern. Of course, one could have repetition of an intervallic pattern without
rhythmic repetition, but cases of this are relatively rare and not particu-
larly salient in perceptual terms.)

We propose the following scheme for representing these intuitions. The
rhythm of a melody can generally be represented in terms of a low (fast)
level of beats, such that every note spans an integer number of beats at that
level; we call these Pbeats. (Complications may arise in cases where low-
level beats are not all metrically equivalent—for example, where a quarter-
note beat is divided sometimes in three and sometimes in four; we will
avoid such cases here.) Pbeats are similar to “beats” as output by the met-
rical program, except that beats have a time point and a level, whereas
Pbeats have only a time point. Let us assume that Pbeats are specified in the
input to the parallelism model. (This assumption may seem problematic,
considering that the function of the model is to help determine where the
beats are, but we will return to this later.) Given a list of Pbeats and a list of
notes (whose onsets, we will assume, always coincide with Pbeats), one can
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Fig. 9. Bach, Sonata for Violin in G Minor, Presto, measures 1-11.
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assign each Pbeat a pair of numbers: an “onset-status” number (1 if it
contains the onset of a note, 0 if it does not) and a pitch number indicating
the pitch of the note beginning or continuing at that point (assuming the
usual convention of middle C = 60). For example, the first two measures of
the Bach Minuet in Figure 2 could be represented as follows (assuming
eighth notes as the Pbeat level):

(58,1) (57,1) (58,1) (50,1) (51,1) (43,1) (41,1) (41,0) (57,1) (57,0) (50,1) (50,0)

We do not distinguish here between rests and continuations of a note. Ev-
ery note is assumed to continue until the next note begins.

We then generate a series of “phase statements.” Each phase statement
is identified with a number, D, representing a certain distance between Pbeats
(in terms of the number of Pbeats elapsed —so the distance between adja-
cent Pbeats is 1). The phase statement then consists of a series of numbers
(parallelism values, or “PVs”). Each PV represents the similarity between
two Pbeats (in terms of the events they contain) that are D Pbeats apart;
the nth PV in the list represents the relationship between the nth Pbeat of
the piece and the Pbeat D Pbeats later. Consider first the case where both
Pbeats contain note onsets. If the two Pbeats are the same in terms of their
pitch interval to the previous note (assuming diatonic intervals, not chro-
matic), the corresponding PV in the phase statement is 3. (We compare
only pitch intervals here; the rhythmic interval to the previous note is ig-
nored.) If the two intervals are different, but alike in contour (i.e., either
both ascending or descending), the PV is 2; if they are different in contour,
the PV is 1. If the two Pbeats are both non-onsets, the PV is 2; if they are
unlike in their onset status (one is an onset and the other is not), the PV is
0. These values were simply found to work well through trial-and-error
testing. Figure 10 provides an illustration.

Two onsets, same
diatonic interval:
score =13

Two onsets, same
contour: score =2

Two onsets, different |
contour: score = |

Onset vs, non-onset: ———— ——— Two non-onsets:
score =0 ' H H 1 H i 1 score=2
o] ' Y ' Ly
& %] 7]
Il | 7 I & z I [ P
ANIV4 I | I Il ¥ Il | I Il I b ! H
) S——— — - |4

Fig. 10. Any two Pbeats (eighth-note beats in this case) can be compared for similarity,
according to what happens there: whether or not an event-onset occurs, and if so, the pre-
ceding interval leading to the event. The example shows the scores (“PVs”) that would be
assigned for different cases. (The melody shown here was composed especially for this ex-
ample.)
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Figure 11 shows phase statements for the first four measures of the Bach
minuet excerpt in Figure 2. (The first PV of each statement represents the
first Pbeat of the piece compared with a later Pbeat; in this case the two
Pbeats cannot be compared intervallically because there is no prior note. In
this case, then, the score is simply 1 if the two Pbeats are alike in onset
status or 0 otherwise.) Consider first the Phase 2 statement. The fact that
the third and fourth PVs are 3 represents a repeated (diatonic) interval
pattern of +1 -5 (this is shown by brackets above the staff). From
“eyeballing” the numbers it can be seen that the Phase 2 numbers are gen-
erally higher than the Phase 3 numbers; this means that there is more rep-
etition at a distance of 2 Pbeats than 3 Pbeats, and hence, that a metrical
period of 2 Pbeats (a quarter-note beat) is favored over one of 3 Pbeats (a
dotted-quarter-note beat) (exactly how this is enforced will be explained in
the following section). Moving to higher-numbered phase statements, it
can be seen immediately that the numbers for phase distance 12 are par
ticularly high; the intervallic similarity between measure 3 and measure 1 is
reflected in a sequence of 3s. Two other examples are shown in Figures 12
and 13, along with phase statements of particular interest. In Figure 12
(the Pbeat unit is the eighth-note here), we find a great deal of rhythmic
repetition (at a distance of four beats)—the eighth-eighth-quarter motive
occurs repeatedly, although with little similarity of interval and only mod-
erate contour similarity. This is reflected in the Phase 4 statement, which

Phase Parallelism values

1 1111120000001 1111212311

2 1233101212102233111212

3 1112010000201 11221112

4 12102022201022112132

5 1301020010201321221

6 1020101020101 12111 !

7 01020130102021222 !

8 101022102020311°1 !

9 020111201010332 !

10 1022331010101 1 !

11 0111112020102 :

12 133333302020 !

13 11111210201 ¢ ;

14 1233111010 | !

15 111221102 : :

16 12112130 | ‘

T o T 'L.! J‘ T ‘l Jnj J T

s X J‘ rl .J i I - I = 1

Fig. 11. Bach, Suite for Violoncello in G Major, Minuet II, measures 1-4, showing phase
statements. The numbers (“PVs”) in the phase statements indicate a comparison between
the corresponding beat and another beat a certain distance later, depending on the “phase”
(e.g., Phase 8 corresponds to a distance of 8 beats).
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1132101210222312
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Fig. 12. Bach, Suite for Violoncello in C Major, Gavotte, measures 1-3 (melody only),
showing phase statement for D = 4.

1222223332222223

Fig. 13. Bach, Sonata for Violin in G Minor, Presto, measures 1-3, showing phase statement
fOI‘ D=3.

consists mostly of 1s (indicating two onsets of different contour) and 2s
(indicating two non-onsets, or two same-contour onsets). Finally, the Phase
3 statement of Figure 13 (the opening of the excerpt shown earlier in Fig-
ure 9) consists mostly of 2s, indicating a repeated pattern of contour with
little repetition of interval at that phase.

A “parallelism finder” was designed that takes, as input, a list of Pbeats
and notes, and outputs this input along with the phase statements just de-
scribed —each phase statement gives its D number, followed by its PVs. (If
the number of Pbeats in the input is N then the number of PVs in a given
phase statement is N — D. For example, consider the phase statement for
D =4 in a piece with 20 Pbeats. The first PV compares Pbeat 1 and Pbeat §;
the 16th PV compares Pbeat 16 and Pbeat 20; the 17th PV, if there was
one, would be superfluous because there is no 21st Pbeat.)

A little explanation is needed of some other aspects of the parallelism
finder. One is the calculation of diatonic intervals. As mentioned earlier,
two intervals are generally considered the same if they correspond to the
same diatonic interval within the currently established scale framework.
To determine this decisively would require knowledge of the key—a sig-
nificant problem that we will not explore here.'® A simpler and still highly
effective solution is available, however. We can observe that, as long as the
intervals involved are the usual diatonic ones, their diatonic category can
be calculated without knowledge of the key: a chromatic interval of +1 or
+2 is always a second (major or minor), an interval of +3 or +4 is always a
third, and so on. Thus we can say that a pair of intervals is the same if each
interval is either +1 or +2 (though one might be +1 while the other is +2), or
if each interval is either +3 or +4, and so on. Table 1 shows these corre-

10. Steedman’s (1977) model uses knowledge of the key to determine diatonic intervals.
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TaBiE 1
Correspondences Between Chromatic and Diatonic Intervals

Chromatic Interval Diatonic Interval
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spondences. One problematic case is the tritone, chromatic interval 6, which
could be either a diatonic interval 4 (a diminished fifth) or diatonic interval
3 (an augmented fourth) depending on the context; we allow interval 6 to
be either diatonic interval 3 or 4. Chromatic intervals such as the aug-
mented second (chromatic interval 3 but diatonic interval 1) are mishandled
by this scheme, but this rarely seems to cause problems in practice.

A second issue concerns the number of phase statements generated. In
principle, the program can generate phase statements of any distance—up
to the number of Pbeats in the piece. In practice, however, phase statements
are needed only up to the largest distances that could possibly occur be-
tween adjacent beats at any metrical level (this will be explained later).
This means that only about 20-30 phase statements are usually required.

Before continuing, a general point arises here, namely the relationship
between parallelism and motivic structure. Motivic structure is generally
assumed to be some kind of network of segments in a piece that are similar
or related. Although parallelism clearly relates to motivic structure, the
representation of parallelism we have proposed differs from a motivic analy-
sis in at least two fundamental ways. First of all, the representation pro-
posed contains no explicit representation of motives or related segments. It
could possibly be used as the basis for deriving such a representation, how-
ever; for example, any sequence of 3s in a phase statement will indicate a
motive that is exactly repeated or transposed (diatonically or chromati-
cally). Second, as noted earlier, the preceding representation captures only
repetition across small time intervals; yet motivic connections can occur at
indefinitely long time scales. It does not appear that such long-range motivic
connections are often important for metrical analysis, but they may occa-
sionally play a role; for example, it may be that once a motive is heard in a
certain metrical context, there is a tendency to impose the same metrical
interpretation on it when it occurs later, even much later, in the piece.
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Using Parallelism as Input to Metrical Analysis

We now turn to the second part of the problem. The assumption is that
the output of the parallelism finder—a list of notes, Pbeats, and phase state-
ments—will be available to the metrical program as it analyzes a piece.
How can this information be used to guide metrical analysis?

We begin with Steedman’s formulation of the parallelism rule, quoted
earlier: when a melodic pattern is repeated, “the metrical accent [should]
fall at the same point in both figure and repeat.” We can state this more
generally, without committing to any segmentation of the input into “pat-
terns,” by saying that when repetition occurs at a certain distance, we want
beats (at some level) to be separated by this distance (or “beat interval,” as
we call it in metrical terms) as well. Unlike Steedman—as discussed ear-
lier—we do not assume that beats should occur only at the beginning of
repeated patterns (this would not be possible under the current framework
anyway, because no explicit “patterns” are identified). Rather, it seems that
repetition at a certain distance should favor beat intervals of that distance
anywhere in the neighborhood where the repetition occurs. This leads us
to the following formulation of the parallelism rule as a preference rule:

Parallelism Rule: Prefer beat intervals of a certain distance to the extent
that repetition occurs at that distance in the vicinity.

Let us consider how to incorporate this rule into the metrical model pro-
posed earlier. Suppose we are considering some tactus level —some row of
beats—and we want to know how well it satisfies the parallelism rule. We
examine each pair of neighboring beats in turn (first beats 1 and 2, then
beats 2 and 3, and so on). Consider a hypothetical beat pair (B1, B2),
where BI is the interval between them. We must first choose the phase
statement whose time interval is closest to BI. Because the metrical pro-
gram measures beat intervals in absolute time (milliseconds), rather than
Pbeats, we must convert each phase statement’s D value (measured in Pbeats)
to an absolute time value. If we assume that all Pbeats are equidistant, this
can be done simply by multiplying D by the time interval between any pair
of adjacent Pbeats. (The case in which Pbeats are not equidistant will be
discussed later.)

In this way, we associate each beat pair with a single phase statement.
We then look at the PVs in that phase statement, within a certain time
interval (the value we use is 1 s) on either side of B1. Note that these PVs
tell us, essentially, the extent to which events in the vicinity of B1 are “par-
alleled” at an interval of BI later—that is, in the vicinity of B2. Essentially,
we simply add all the PVs within this 2-s window; this then provides a
“score” telling us the goodness, in terms of parallelism, of a pair of beats
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at B1 and B2. However, we also weight the PVs under a linear function
reflecting closeness to B1. This linear function assigns a weight of 1 to PVs
exactly at B1, descending to a weight of 0 for PVs 1 second away from B1.
Figure 14 shows an example (using hypothetical PVs). The Pbeats are 250
ms apart, and the beat pair shown (between beats at time points 1500 and
3000) is being considered; presumably this phase statement would corre-
spond to Phase 6, as that is the distance closest to BI (6 x 250 = 1500). The
2-s window around B1 is shown with a bracket; PV numbers within this
window contribute their scores to the parallelism score, weighted accord-
ing to the linear function described earlier.!! (All PVs outside the 2-s win-
dow contribute a score of 0.) Using this method, any beat pair can be
evaluated according to how well it is supported by the parallelism of the
piece. An entire beat level can then be scored by summing the scores for
each beat pair, and this score can be added in with the scores from the
other preference rules. Because parallelism in a certain part of the piece
affects only the scores for beat pairs in the vicinity, a change in the preva-

Pbeats (corresponding to a
low level of the metrical
structure) . . . . . . . . . . . . . .

0 (msec) 1000 2000 3000

Phase statement for D=6.

This represents the 02 1 3 0 1 2 0 1 1 2 0 1 0 1
similarity between pairs of

Pbeats that are 6 Pbeats . .

apart. Each number (PV) Bl B2

in the statement compares L |

the corresponding Pbeat

with the one 6 Pbeats
later.
weight
PV’s for Pbeats within 1 1.0
second of B1 are weighted
under a linear function.
0.0 ttime relative to Bl (sec)
-1.0 0 1.0
These weighted scores are
summed, to determine the
parallelism score for the Ox1 .25x3 .5x0 .75x1 1.0x2 .75x0 .5x1 .25x1 0x2
beat pair (B1, B2). This =0 =.75 =0 =.75 =2.0 =0 =.5 =.25 =0
indicates the degree to
which events in the 0+ .75 + 0+ .75 + 2.0 + 0 + .5 + .25 + 0 = 4.25

vicinity of B1 are
“paralleled” 6 beats later:
that is, the goodness—in
terms of parallelism —of
the beat pair (B1, B2).

Fig. 14. An example showing the calculation of parallelismscores for the beat pair (B1, B2).
(This is a hypothetical example, not reflecting any actual piece.)

11. The 2-s window around B1 may or may not overlap B2; in this case it does not.
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lent parallelism distance from one section to another may result in a change
in metrical structure, as is surely correct (an example of this will be seen
later).??

As mentioned earlier, the program does not actually consider complete
analyses, but uses an efficient search technique to find the best one; this is
a variant of a search technique from computer science known as dynamic
programming. As it happens, the method just described of examining indi-
vidual beat pairs fits in nicely with this procedure. Consider just the tactus
level. As explained earlier, all onsets and offsets are first quantized to pips,
and beats may occur only at pip locations. The program then proceeds in a
left-to-right fashion; at each pip, it finds the highest-scoring analysis of the
piece so far ending with each possible beat interval, that is, ending with a
beat at the current pip P. and a beat at some earlier pip P. To do this it must
consider adding the current beat pair, (P, P), on to each’ previous beat pair
(P, P), in order to factor in the regularlty rule; it takes the score for the
best analy31s of the piece ending in each (P, P) pair (which has already
been calculated), and adds on the new score for (P P). It records the score
of the highest-scoring analysis ending in (P, P), along with the (P, P. ) pair
that this analysis entails. When doing this, 1t factors in the parallehsm score
for (P,P). When the whole piece has been analyzed, it chooses the highest-
scorlng (P P ) near the end of the piece and traces this back through the
piece to yleld the preferred analysis.

Currently, the program applies the parallelism rule only for the tactus
level and higher levels, not levels below the tactus; this was simply an intui-
tive decision based on the observation that parallelism does not usually
seem to be an important factor in lower-level metrical analysis. The appli-
cation of the parallelism rule at higher levels is the same as that described
for the tactus. The search procedure for higher levels is similar as well; it is
more constrained, however, given the well-formedness rules that every
higher-level beat must be a beat at the immediately lower level, and exactly
one or two beats at the level below must elapse between each beat pair at
the current level.

One aspect of the model that might be questioned is the use of Pbeats as
input to the parallelism finder. Because the whole point of the parallelism
finder is to help determine the metrical structure, assuming Pbeats as input
might seem circular. However, we would argue that this is (a) unavoidable
and (b) not really problematic. Regarding the first point, some kind of
integer representation of rhythmic values seems essential to our intuitions

12. It might be thought that the program should favor phases such as 2, 3, 4, and 6 as
opposed to (for example) 5 and 7. We have not found much need for such a rule. Repeated
patterns of 5 beats are extremely rare in common-practice music; when they do occur, it is
arguable that they lead us to hear a quintuple metrical structure. However, the need for
such a rule does arise occasionally; an example will be given later.
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about parallelism. The idea of a repeating “rhythmic pattern” generally
implies a pattern of durations measured as multiples of a low-level beat—
not as a pattern of absolute time values; we can certainly perceive a repeat-
ing rhythmic pattern even when the tempo is fluctuating. We cannot think
of any way of characterizing parallelism without some notion of low-level
rhythmic units.”® Regarding the second point, the parallelism finder only
requires information about the lowest level of beats, and as mentioned
earlier, parallelism rarely seems needed to determine this in any case. Our
practical solution to this problem has been to first run a piece through the
metrical program (ignoring parallelism), producing the usual note list and
beat list; this output is read in by the parallelism finder, which treats the
lowest level of beats as the Pbeats, ignoring all higher levels. The parallel-
ism finder adds the phase statements; all this (notes, Pbeats, and phase
statements) is then fed back into the meter program, although the Pbeats
are now used only indirectly to determine the metrical structure (see Fig-
ure 15). (It is not assumed that Pbeats will necessarily be beats in the final
metrical structure; they generally will coincide with the lowest metrical
level of the final metrical structure, but may not always do so.) Indeed,
something along these lines seems plausible for human perception as well;
some kind of low-level metrical analysis is presumably done to identify
patterns of repetition, which then guides higher-level metrical analysis—
although a tighter integration of the two processes would surely be more
cognitively plausible than what we have proposed.

A second issue concerns the equidistance of Pbeats. If we think of Pbeats
as corresponding to the lowest level of the metrical structure, they will
generally not be exactly evenly spaced in a situation of real musical perfor-
mance. However, the general scheme just sketched —in which a piece is fed
first to the metrical program to generate Pbeats, then to the parallelism
finder, and then back to the metrical program—does not assume perfect
regularity, at any level or at any stage. The metrical program is designed to
handle situations of fluctuating tempos, and can identify lowest-level beats
in such cases with considerable (although not total) success. (If the metri-
cal program is unsuccessful at this task —if the lowest-level beats are not
correctly identified — then of course the performance of the parallelism finder
may suffer.) If the Pbeats identified by the metrical program are some-
what irregular, this itself should not cause any problem; indeed, the
parallelism finder pays no attention to absolute time values, except to
determine which note onsets coincide with which Pbeats. Nor should it
be problematic to feed these irregular Pbeats back into the metrical

13. If the lowest-level beats of a piece were perfectly regular, and all note onsets coin-
cided perfectly with these beats, the parallelism finder could probably determine the Pbeats
fairly easily from the note list. However, as we will explain, it seems better #ot to assume
that Pbeats are perfectly regular.
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Note 0 225 55
Note 225 450 57
Note 450 675 59
Note 675 900 60
Note 900 1012 59
Note 1012 1125 57
Note 1125 1350 55

\

Meter program (reads in
note list, adds beats)

Note 0 210 55
Note 210 455 57
Note 455 665 59
Note 665 910 60
Beat 0 1
Beat 105 O
Beat 210 2
Beat 315 0
Parallelism-finder (reads beats
in as Pbeats; outputs notes,
Pbeats, phase statements)
Note 0 210 55
Note 210 455 57
Note 455 665 59

Note 665 910 60
Pbeat 0
Pbeat 105
Pbeat 210

\/

Pbeat 315
‘V .
) Phase 1 100 0..
Meter program (reads in notes, Phase 2 1 2 3 2..
Pbeats, phase statements; outputs T
notes and beats, this time taking
parallelism into account)
Note 0 210 55
Note 210 455 57
Note 455 665 59
Note 665 910 60
Beat 0 1
Beat 105 O
Beat 210 2
Beat 315 0

Fig. 15. The operation of the combined parallelism and meter programs.
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program.' In short, unquantized data do not appear to pose any problem
for the parallelism finder itself; such data may sometimes cause problems
for the meter program as a whole, but this is not our present concern.

A Few Examples

In developing a computational model, it is desirable to perform some
kind of test of the model’s success. The question is whether the parallelism
model proposed here improves the performance of the Temperley/Sleator
meter program, and to what degree. Ideally, testing would be done by run-
ning the program with and without the parallelism component on a sys-
tematically chosen and varied corpus of common-practice pieces and then
comparing the results. This approach was problematic for several reasons.
Because the model works only on monophonic music, the test corpus would
have to consist entirely of monophonic excerpts; this eliminates corpora
that have been used for testing elsewhere, such as the Kostka-Payne corpus
(Temperley, 2001). Moreover, because the Temperley/Sleator program
achieves the correct analysis on a large majority of excerpts even without
parallelism (see the test results cited in the section earlier), quite a large
corpus of pieces might be required in order to obtain a significant level of
improvement. There is another complication here as well (one that arises,
in fact, with all metrical models): we are seeking to model human percep-
tion of meter, but the perceived meter of a piece may not always corre-
spond exactly to the notated meter, although we assume that it generally
does. For example, in the fugue subjects of Bach’s Well-Tempered Clavier
(a corpus that might otherwise be quite appropriate for testing), it is some-
times quite doubtful that the perceived meter would correspond to the no-
tated one, at least on the basis of the fugue subject alone.!s For these rea-
sons, systematic testing was determined to be impractical at present
(although we hope to undertake it in the future). Rather, the program was
simply tested on an unsystematically chosen set of monophonic excerpts
from Bach fugues and violin and cello suites; several of these are discussed

14. One issue does arise here: in deciding which phase statement is associated with a
given beat pair (B1, B2), the metrical program looks for the D that is the closest to that
pair’ beat interval. If the Pbeat intervals are not all the same, it makes a difference how this
value is calculated. The program does this by averagingthe 10 Pbeat intervals in the vicinity
of B1. In this way, fluctuations in Pbeat length—even quite large fluctuations—from one
part of the piece to another should not cause severe problems, because Pbeat intervals are
calculated in a local fashion.

15. Consider, for example, Book I, Fugues 1, 8, 14, and 19. This corpus has, in fact, been
used for testing of other metrical models (Longuet-Higgins & Steedman, 1971; Steedman,
1977); in these cases, the notated meter was assumed to be correct.
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later. The examples presented are all cases where the prior version of the
program (as proposed in Temperley, 2001) produces an incorrect analysis;
the issue, then, is whether incorporating the factor of parallelism can im-
prove the program’s performance. (It is of course possible that the parallel-
ism component would worsen performance in cases where the earlier model
was correct; we have not investigated this yet.)

The only parameter to be set (aside from those already discussed) was
the weight of the parallelism rule relative to other rules; an optimal value
of this was determined by trial-and-error testing, which was used on all the
examples reported here. Regarding other parameters of the program (not
relating to parallelism), the parameter set used is the same as that used in
the tests reported in Temperley (2001), with one exception. On the mono-
phonic passages used here, the tactus level produced by the program was
excessively irregular; thus a greater weight was given to the regularity rule
to ensure a regular tactus.

Figure 16, the opening of the Allemande to Bach’s Suite for Violoncello
in C Major, provides a simple successful example of the model. (Just this
portion of the piece was used as input to the program.) The original nota-
tion of the passage is shown in Figure 6. Without the input of parallelism,
the program gets the analysis shown in Figure 16 A. The eighth-note level is
correct (the program regards this as Level 2, i.e., the tactus); however, the
next level up (Level 3) is analyzed as triple, rather than duple. (The main
factors here are the low C in the middle of the phrase and the B eighth note
at the end, both of which the program wants to consider as metrically
strong. Recall that the length of a note is determined by its “registral
interonset interval”; the low C is a long note by this criterion.) Once the
factor of parallelism is included, the program produces the analysis shown
in Figure 16B. Level 3 is analyzed as duple, Level 4 is duple as well, and the
phase of each level is correct; thus the metrical analysis produced corre-
sponds exactly to the original notation, with the exception that the “whole-
note” level is missing. As noted earlier, the intervallic pattern repeating at a
distance of a quarter note (Phase 8, given the 32nd-note level as the Pbeat

Fig. 16. The Bach excerpt shown in Figure 6, showing (A) the program’s analysis without
parallelism, (B) the program’s analysis with parallelism.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Parallelism as a Factor in Metrical Analysis 141

level) strongly encourages the program to have a metrical level of this pe-
riod. Figure 9, the opening of the Presto from Bach’s G Minor Violin So-
nata, shows another successful example. Without parallelism, the program’s
analysis is completely wrong; it finds a quarter-note level rather than a
dotted-quarter level as the tactus, with beats on every fourth sixteenth note.
With parallelism, the metrical structure identified is perfectly correct.!® (The
program does not actually need as much of the piece as this to identify the
correct structure; if given only the first three measures, it finds the correct
analysis, whereas without parallelism it is once again incorrect.)

Figure 17 shows a case of partial success, the subject of Fugue 21 from
Book I of the Well-Tempered Clavier. Figure 17A shows the correct metri-
cal structure, as indicated in the notation. Note the parallelisms at the one-
measure (dotted-half-note) level between the end of measure 1 and the end
of measure 2, and also (even more strongly) between measure 3 and mea-
sure 4. Without parallelism, the program produces the analysis in Figure
17B; the tactus (quarter-note) level is correct, but Level 3 is incorrectly
identified as duple. With parallelism, the analysis in Figure 17C is pro-
duced. Now the period of Level 3 is correct, but the phase is wrong; the
program places a dotted-half-note beat on the second and fifth quarter-
note beats rather than the third and sixth. This error cannot be blamed on
the parallelism model itself. As discussed earlier, the parallelism model is
only supposed to decide the correct period for each level; it is indifferent as
to phase. The hope is that other factors will determine the phase correctly,
but this does not always happen. Perceptually, the important cue here would

o1
L300}

Fig. 17. Bach, Well-Tempered Clavier Book 1, Fugue 21, measures 1-4. (A) The original
notation. (B) The program’s analysis without parallelism. (C)} The program’ analysis with
parallelism.

16. The program identifies the level below the tactus as the eighth-note level rather than
the dotted-eighth. Although this agrees with the notation (which specifies 3/8 rather than 6/
16 as the time signature), it might seem surprising— perhaps even contrary to perception—
given the strong three-sixteenth-note parallelisms in the first three measures of the piece.
The reason for this is that, under the current implementation, parallelism affects metrical
analysis only at the tactus level and higher, not at lower levels.
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seem to be harmony (a factor not incorporated into the standard version
of the program); there are clear harmonic changes on the second and third
notated downbeats, leading us to infer strong beats there. Cases such as
this—where the period of the meter is correct but the phase is not—
suggest that although the parallelism component of the model is work-
ing fairly well, other aspects of the model require improvement (through
the addition of other factors, or the improved implementation of exist-
ing ones).

Figure 18, the subject of Fugue 24 from Book II of the Well-Tempered
Clavier, provides an interesting case of failure in the parallelism model
itself. Figure 18A again shows the correct analysis. Without parallelism,
the analysis in Figure 18B is produced; the tactus is incorrectly identified
as duple rather than triple. Perceptually, the triple meter of this subject
seems obvious enough; and it seems clear that at least one factor is the
repeated motive (down an octave, then up an octave) in measures 3 and 4.
Yet, in this case, adding parallelism does not produce the right analysis.
Even increasing the weight of the parallelism factor beyond the normal
level does not lead to the correct result. Why does the program fail here?
One clue lies in the phase statements. Figure 18 shows the phase state-
ments for Phase 4 (the incorrect quarter-note level) and Phase 6 (the cor-
rect dotted-quarter level). From eyeballing the numbers, it does not appear
that the Phase 6 numbers are any better than the Phase 4 numbers. Phase 6
has seven 3s (indicating a same-interval match); Phase 4 has six 3s. Phase
6 is hardly preferable to Phase 4 from the point of view of the PVs, so the
metrical program has little reason to favor the dotted-quarter pulse. What
the Phase 6 statement does have is a string of 3s and 2s close together,
indicating the repeated motive in measures 3—4. This suggests that, per-
haps, the program should give more weight to an intense degree of repeti-
tion over a short period—that is to say, a motive —rather than to a moder-
ate degree of parallelism spread out over a longer period (as is found for
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Fig. 18. Bach, Well-Tempered Clavier Book II, Fugue No. 24, measures 1-6. (A} The origi-
nal notation; phase statements for Phases 4 and 6 are shown above the staff. (B) The program’s
analysis, with and without parallelism.
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phase distance 4).'” However, we will not attempt to formalize this intu-
ition any further here.

A final example illustrates an important feature of the metrical program
(and the current model of parallelism): the ability to detect shifts in metri-
cal structure from one section of a piece to another. As mentioned earlier,
we found that the program’s tactus level was generally too irregular on the
excerpts used for testing, so the weight of the regularity rule was boosted.
However, reducing the weight of the regularity rule sometimes produces
interesting results. Figure 19 shows the entire first half of the Presto to
Bach’s G Minor Violin Sonata (the opening of which was discussed ear-
lier). The excerpt was analyzed by using a relatively low weighting of the
regularity rule. Dots above the score indicate the tactus level found by the
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Fig. 19. Bach, Sonata for Violin in G minor, Presto, measures 1-54. The program’s analysis
is indicated above the staff.

17. One possibility would be to square the parallelism scores contributed to each beat
pair, thus favoring more concentrated (as opposed to more diffuse) parallelism.
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program. It can be seen that this analysis is correct in some aspects, incor-
rect in others. The beginning (mm. 1-17) is correct in both period and
phase; from measures 17-31, the analysis is correct in period but one six-
teenth note off in phase. (The fact that the final note of m. 18 —and many
of the subsequent measures—is not closely followed within register makes
it seem “long” to the program.) The switch to a quarter-note pulse (with
beats on every fourth sixteenth note) at measure 33, although contrary to
the musical notation, is not implausible; a clear four-note sequence occurs
in measures 33-35 (a kind of cross-rhythm), which, it could be argued,
temporarily challenges the dotted-quarter beat and causes us to entertain a
quarter-note beat instead. Less plausible is the quintuple pulse (with beats
every five notes) in measures 36—42; this is not supported by any signifi-
cant five-beat parallelism but seems to be the program’s way of switching
gradually from the 4-sixteenth-note period of the previous section to the 6-
note period of measure 43 onward. Although it was noted earlier that there
was rarely a need for a rule against five- and seven-beat groupings (see
footnote 12), this a case where such a rule would help.!® In this final sec-
tion, the period is once again correct (and is strongly supported by parallel-
ism), although the phase is once again wrong. For the most part, the paral-
lelism rule seems to be working well in this case, detecting the prevalent
six-beat parallelism in many parts of the piece but also the four-beat pat-
tern in measures 33-35. The fact that the phase of the meter is so often
incorrect shows (once again) that there is room for improvement in other
aspects of the model.

Directions for Further Work

Aside from points made in the preceding section, there are several ways
that the current model could be extended and improved. One obvious im-
provement would be to extend the program to handle polyphonic music—
a natural further step, considering that the Temperley/Sleator program is
designed for polyphonic input. This would appear to be a major undertak-
ing, however; in particular, it would require a different approach to mea-
suring parallelism from the one just described. One approach would be to
look only at the top voice of the music (which could be crudely identified
by looking at the highest note present at each moment and merging these
together) and performing monophonic parallelism analysis on this. This
approach seems unlikely to work well, however; very often, parallelism is

18. Measures 35-42 do feature a strong parallelism, but it is a parallelism at a distance
of 12 beats—two measures—so it is of little help to the program in determining the tactus
level.
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most prominent in an inner (accompanying) voice, rather than in the melody.
In the Moonlight Sonata, for example (Figure 3), it is the middle voice
(which starts out as the top voice but is joined by a higher melody in m. 5)
that establishes and maintains the repeated pattern that is primarily re-
sponsible for conveying the quarter-note level of the meter. A more robust
approach would be to first identify the melodic voices of the texture (a
highly complex process in itself—see Marsden, 1992; Temperley, 2001),
analyze each voice independently for parallelism, and then somehow merge
these analyses together. For example, the PVs in each phase statement could
reflect the sum of PVs for the individual voices.

One might also wonder if the method proposed here for identifying par-
allelism within a single voice is really sufficient. In particular, parallelism
can often involve a melodic pattern followed by an elaborated variant. The
current program’s success at handling this depends on the nature of the
elaboration. Consider the Bach fugue subject in Figure 17A; one might
regard this as a one-measure pattern (ending on the downbeat of m. 2)
followed by an elaborated (and shifted) repetition of the pattern. In this
case, part of the pattern (the last three notes) is repeated exactly (although
transposed) in the repetition; the program identifies this and thus captures
the partial similarity between the two segments. However, consider a case
such as Figure 20, the Gavotte from the E Major Violin Partita (consider
just the top line for the moment). The bracketed segments shown in the
score clearly sound related; the second is an elaborated version of the first.
But the elaboration here largely involves the insertion of new notes be-
tween existing notes, and this disrupts the beat-to-beat similarity between
the two segments. (Only the F+E-F# segment of the original is exactly pre-
served in the repeat.) As a result, the parallelism between the two is mostly
unnoticed by the program. To handle such a case, the program would need
to identify the structural notes of each segment and perform the parallelism
comparison on these; it would then realize that the structural notes of the
two segments are essentially the same. Of course, identifying the structural
notes of a melody is a highly complex and often very subjective matter; and
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Fig. 20. Bach, Partita for Violin in E major, Gavotte, measures 1-7.
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it is not clear that such subtle structural parallelisms are often a factor in
the perception of meter, important and interesting though they are.

So far, we have assumed that the effect of parallelism on meter is to favor
beat intervals of the same period as the parallelism. However, parallelism
also appears to affect metrical analysis in at least two other ways. For one
thing, when a pattern is immediately repeated, there is a preference for the
stronger beat to occur on the first occurrence of the pattern rather than the
second. Temperley (2001) refers to this as the “first-occurrence-strong”
rule. Figure 21 offers an example. Given just the first measure, one tends to
hear a strong beat at the very beginning of the piece (following the ten-
dency to hear strong beats near phrase beginnings). However, there is a
clear parallelism between the second half of measure 1 and the first half of
measure 2; by the rule just mentioned, this favors hearing beat 3 of mea-
sure 1 as a downbeat, stronger than beat 1 of measure 2 (this, of course, is
contrary to the notated meter). A further, subtle, effect of parallelism on
meter involves patterns that repeat with one or more notes held constant,
while others change. In such cases, there is a tendency to hear the strong
beats on the changing notes rather than the constant ones. In Figure 22, the
fact that three notes of the four-note pattern remain the same (C-B-C) while
the fourth one changes causes us to hear the changing note as metrically
strong. This might be called the “new information” rule: when a pattern
contains new information and old information, we tend to locate the met-
rical accents on the new information. This rule would also help the pro-
gram in its analysis of the Bach presto (Figure 19). A six-note pattern in
measure 235 is repeated in varied form in the following three measures; in
this case, the fact that the last three notes of each measure (B»-A-Bb) are
repeated exactly each time should tell the model that the strong beat is
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Fig. 21. Bach, Well-Tempered Clavier Book I, Prelude No. 9, measures 1-2.

Fig. 22. Bach, Prelude BWV 953, measures 1-3.
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unlikely to be here, but rather, somewhere in the first three notes of the
pattern (which are different on each occurrence).”

A final complication in the modeling of parallelism and meter concerns
the fact that the influence is not just one-way. Parallelism can often influ-
ence metrical analysis; but once a metrical framework is established, this
can affect the parallelisms that are heard.?® In some cases parallelisms that
go against an already established metrical framework go by almost unno-
ticed. For example, Figure 23 features an exactly repeated three-sixteenth-
note motive, G-F-Eb (marked with brackets), but because the two occur-
rences are not parallel with respect to the prevailing meter the parallelism
is hardly heard. (Rather, we hear the first G-F-Eb as parallel to the F-Eb>-D
beginning on the second quarter-note beat of the measure; and these two
segments are metrically parallel.) On the other hand, cases such as the cross-
rhythm in measures 33-35 of the Bach presto (Figure 19) suggest that par-
allelisms of sufficient strength can stand out against a previously estab-
lished meter and can even cause us to modify our metrical perception
accordingly. The complex relationship between meter and parallelism brings
to mind the interaction of meter with harmony and grouping, mentioned
earlier. Like parallelism and meter, harmony and meter have a complex
interactive relationship; harmonic structure can influence meter, but metri-
cal structure in turn exercises a profound influence on harmony. Of course,
these kinds of interaction between levels present formidable challenges from
a modeling point of view.

In short, there are a number of ways in which the current model could be
improved. It could be expanded to handle polyphonic music and varied
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Fig. 23. Bach, Suite for Violoncello in Eb major, Allemande, measures 5-6.

19. The “new information” factor is discussed by Steedman (1977). This phenomenon is
analogous to the phenomenon of “contrastive stress” in language: elements of a sentence
are generally accented when they are new or unexpected. Consider the sentence “John chased
the dog.” Normally, one would say this sentence with the accent on the direct object dog.
However, if your audience had been assuming that Fred had chased the dog, you would
probably accent the subject: “Job# chased the dog.” If your audience had assumed that
John had petted the dog, you might say “John chased the dog.” This is a bit different from
the musical case —the linguistic case does not involve actual repetition of anything, and the
linguistic case involves explicit accentuation of certain elements while the musical case does
not—but the basic idea is the same.

20. It could also be argued —as noted earlier —that metrical analysis affects parallelism
in a more basic way, in that some kind of encoding of lower-level beats is necessary for
parallelism to be represented.
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(elaborated) repetition; it could also be extended to incorporate other ef-
fects of parallelism — the “first-occurrence strong” rule and the “new infor-
mation” rule. The “two-way” relationship between meter and parallelism
also remains to be addressed. Clearly, a number of challenges remain in the
modeling of parallelism and its effect on meter.

In closing, we should return to an issue that was raised briefly in the first
section of this article: the relationship between computational modeling
and psychology. Even if the current model were developed to the point of
complete success in predicting listeners’ judgments of meter, this would not
prove that human perception of meter involved the same procedure. How-
ever, in the course of this computational investigation into parallelism and
its role in metrical analysis, we have identified a number of aspects of the
process that we believe any psychological model will have to incorporate.
We have suggested that such a model must be sensitive to different kinds of
repetition: rhythmic repetition, contour pattern, and exact (diatonic) inter-
vallic pattern. We have also suggested that parallelism is best modeled by
comparing beats at different distances, rather than by an explicit segmen-
tation of the music into patterns or segments, a step that is not always
independently motivated and that can also lead to problems of redundancy.”!
Regarding the effect of parallelism on meter, we have suggested that paral-
lelism primarily affects the distance between beats (period), not the exact
placement of those beats relative to the music (phase). Any model that
meets these various requirements deserves consideration as a hypothesis
about musical cognition—all the more so if it achieves reasonable success
in producing the desired outputs. However, whether our model truly cap-
tures the psychological processes involved in the perception of parallelism
and meter remains an open question; further work —in particular, experi-
mental work—is needed to determine its validity in this regard.
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