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 Abstract 
This paper explores three tonal properties of pitch-class sets. Tonal implication is the 
key that a set implies; tonal ambiguity is the degree to which a set implies one key as 
opposed to several; tonalness is the degree to which a set is characteristic of the lan-
guage of common-practice tonal music. I propose a simple probabilistic framework 
for measuring these three properties. I then examine some applications of the theory, 
focusing on the measurement of tonal ambiguity and how this sheds light on some 
issues of compositional practice and tonal analysis. 
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2.1 Introduction 
The concept of a pitch-class set is a familiar one in music theory. In the study of early 
20th-century atonal music, it has proven to be a concept of great theoretical and ana-
lytical value. Its relevance to tonal music is, perhaps, less obvious. In fact, however, 
references to pitch-class sets are rather commonplace in discourse on tonal music, 
though the term itself is rarely used.1 For instance, when we speak of a “C major 
triad,” we generally have in mind a set consisting of the pitch-classes C, E, and G, so 
that—for example—the three passages in Figure 2.1 are all realizations of the 
set.

 

Figure 2.1.  Three realizations of a C major triad. (a) Mozart, Piano Concerto K. 503, I, m. 1; 
(b) Mozart, Sonata K. 545, I, m.1; (c) Chopin, Etude Op. 10 No. 1, m. 1.

The premise of this article is that pitch-class sets have certain properties that are an 
important part of the way we perceive and understand tonal music. We will be con-
cerned with three properties in particular: tonal implication, tonal ambiguity, and 
what I will call “tonalness.” These three properties are illustrated by the three sets in 
Figure 2.2. 

 

Figure 2.2.  Three pitch-class sets. 

Tonal implication is simply the tonality or the key that a set implies. For example, the 
set [C-D-E-F] seems to imply the key of C major, or perhaps F major; it certainly does 
not imply F# major. The set [B-C-D-Eb] seems to imply C minor, while a set like [C-
C#-F#-G] does not project a strong implication of any key. 

Tonal ambiguity is closely related to tonal implication, and is the extent to which a 
set strongly implies a single key or is ambiguous among multiple keys. [B-C-D-Eb] is 
quite unambiguous; it has a strong implication of C minor. [C-D-E-F] is more am-
biguous because it could easily imply either C major or F major. [C-C#-F#-G] is 
highly ambiguous too, as (again) it does not strongly imply any key. 
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Finally, tonalness is the degree to which a set seems characteristic of the language of 
common-practice tonality. Tonalness asks the question: Is this a set that we would 
expect to find as the pitch material for a short segment of a tonal piece? It seems safe 
to say that [C-D-E-F] and [B-C-D-Eb] are both fairly high in tonalness, whereas [C-
C#-F#-G] is lower in tonalness. In what follows, I propose a probabilistic method for 
predicting these tonal properties of pitch-class sets. 

Before continuing, we should acknowledge the obvious fact that the tonal properties 
of a pitch-class set depend in some measure on the way the set is realized—the way 
the pitch-classes are doubled, repeated, and arranged in time and register. One could 
certainly realize the set [C-D-E-F] in a way that unambiguously conveyed C major 
(Figure 2.3a) or that unambiguously conveyed F major (Figure 2.3b).2 

Figure 2.3.  Two realizations of the set [C-D-E-F]. 

Yet we do, I submit, have intuitions about the tonal properties of pitch-class sets—
intuitions to which I was appealing above. 

What is the basis for these intuitions? There are various ways that the notion of “the 
properties of a pitch-class set” could be defined more rigorously. One could define a 
set’s properties as those produced by a “neutral” realization of the set—perhaps a 
repeating monophonic pattern, fading in and out, in which each tone is presented 
once, and all are durationally equal and realized as Shepard tones. One could also 
define the properties of a set in terms of the properties of all of its possible realiza-
tions (given some kind of defined limits on the space of possible realizations). For ex-
ample, the tonal ambiguity of a set could be defined as the average ambiguity of all 
possible realizations of the set (or, what comes to the same thing, as the average am-
biguity of a large number of randomly chosen realizations). Both of these approaches 
essentially identify a pitch-class set with some kind of prototypical or neutral realiza-
tion (or realizations) of that set; that is also what we are doing, I believe, in making 
intuitive judgments about the set. We will not pursue this issue further here. Suffice 
to say that the notion of “the properties of a set,” while somewhat vaguely defined, is 
certainly not without empirical content and could be specified more precisely if one 
desired to do so. 
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2.2 Tonal Implication, Tonal Ambiguity, and Tonalness 

2.2.1 Tonal Implication 
We begin with the concept of tonal implication. Probabilistically, the tonal implica-
tion of a set can be defined in terms of the probability of each key given the set 
P(key|pcset); the set yielding the highest probability is the most strongly implied 
key. Bayes’ rule tells us that  

(1) P(key | pcset) ∝ P(pcset | key) P(key) 

when the pcset is held constant. Let us assume that all keys are equal in probability. 
(This seems a reasonable assumption for listeners who lack absolute pitch, as most 
listeners do.) Then it follows that P(key|pcset) ∝ P(pcset|key). Thus the probability 
of a key given a pitch-class set is proportional to the probability of the pitch-class set 
given the key. 

How can we determine the probability of a pitch-class set given a key? Elsewhere I 
have proposed a way of addressing this problem (Temperley 2004). This method re-
quires a musical corpus; in this case, the corpus we use is the Kostka-Payne corpus, a 
set of 46 harmonically analyzed excerpts from tonal pieces taken from the Kostka-
Payne theory workbook (Kostka and Payne 1995). The corpus is divided into short 
segments, corresponding roughly to measures (see Temperley 2004 for further detail 
on how this was done). For all major-key segments, we count the proportion of seg-
ments containing each “scale-degree”—a pitch-class in relation to the key; we repeat 
the same process for minor keys. This yields the “key-profiles” shown in Figure 2.4. 
(The concept of key-profiles is familiar from the work of Krumhansl 1990. In this 
case, however, we construe key-profiles probabilistically, which Krumhansl did not.) 

It can be seen, for example, that in major-key segments, scale degree 1 occurs in .748 
(74.8%) of segments; scale degree #4 occurs in only .096 (9.6%) of segments. The key-
profiles reflect well-established musical principles; tones of the scale have higher 
values than chromatic tones (assuming the minor scale to be harmonic minor), and 
tonic-triad tones have higher value than other scalar tones. Given these profiles, the 
probability of a pitch-class set given a key can be defined as 

(2) P(pcset | key)  =  ΠKpc Π(1–Kpc) 

where Kpc is the the key-profile value for a pitch-class given a key, p indicates pitch-
classes present in the set, and ~p indicates pitch-classes not present in the set. As 
noted above, this is proportional to P(key|pcset); thus the key that maximizes this 
expression is the most probable key given the set. A key-finding algorithm based on 
this approach has proven to be quite successful; on the Kostka-Payne corpus, the 
model yielded the correct key in 775 out of 896 segments (86.5%). (For further details 
about this and other tests, and comparison of this model with other key-finding 
models, see Temperley 2007.) 

      p            ~p 
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Figure 2.4.  Key-profiles for major keys (above) and minor keys (below). 

2.1.2 Tonal Ambiguity 
We now turn to ambiguity. As noted above, the ambiguity of a set is simply the de-
gree to which it clearly implies a single key, or is equivocal between two or several 
keys. It seems clear that the key-finding method described above could also be used 
to measure ambiguity. A set for which one key is far more probable than any other is 
unambiguous; a set that yields roughly equal probabilities for multiple keys is am-
biguous. There are various ways that this might be quantified. One simple way is to 
define the ambiguity of a set as the ratio in probability between the most probable 
key and the next most probable; if this value is close to 1 the set is ambiguous (it can 
never be less than 1), while if it is much greater than 1 the set is unambiguous. It is 
important to note that a higher “top-two ratio” indicates lower ambiguity; rather than 
describe this as an indicator of tonal ambiguity, it would be more precise to call it an 
indicator of tonal clarity, and I will henceforth do so here. 

Table 2.1 shows this measure of tonal clarity for certain basic pitch-class sets. The 
first two columns show the most probable and second-most probable keys, with their 
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probabilities; the third column is the ratio between the two, yielding the “tonal clar-
ity score” for the set. We can see, for example, that [C-E-G] is judged to have higher 
clarity (lower ambiguity) than [C-C#-D] by this measure, as it surely should. Turning 
to larger pitch-class collections, we find that the octatonic and whole-tone scales are 
very low in clarity, close to or at the minimum score of 1; the same is true of the set 
[C-C#-D-Eb-E-F-F#] (seven pitch-classes spaced by half-steps, which we call by its 
pitch-class set-theory name, [0123456]). (In fact, an octatonic scale has four keys that 
are tied for top rank, and a whole-tone scale has six; it is arbitrary in such cases to de-
cide which of the keys are first- and second-ranked, but whichever ones are, the ratio 
between their probabilities is clearly 1.) The major scale has much higher clarity, and 
the harmonic minor scale has the highest of all. 

In some respects, these results are unsurprising. It is common knowledge that the 
whole-tone scale and octatonic scale are highly ambiguous: they are symmetrical 
scales, formed by a repeating intervallic pattern, thus they yield the same degrees in 
several different keys. For example, the whole-tone scale [C-D-E-F#-Ab-Bb] contains 
1-2-3-#4-b6-b7 of C major, and the same scale-degrees in D major, E major, F# major, 
Ab major, and Bb major. By contrast, the major and harmonic minor scales are not 
symmetrical: each transposition of the major scale contains the scale-degrees of only 
one major key. One aspect of Table 1 that is surprising, and not part of conventional 
wisdom, is the greater clarity of the harmonic minor scale compared to the major 
scale. Closer examination proved that this was due to two factors. One concerns the 
degree of overlap between scales of different keys. A major scale such as C major 
shares 6 out of 7 degrees with three other scales (G major, F major, and A minor). By 
contrast, a minor key such as A minor (represented by the harmonic minor scale) 
shares 6 out of 7 scale-degrees with just one key, C major. There is another factor as 
well, relating specifically to the relationship between relative keys. In the case of C 
major, the three tonic-triad notes of all three “nearest-neighbor” keys (G major, F ma-
jor, and A minor) are all within the scale; this means these keys have reasonably high 
probability given the C major scale. In the case of A minor, however, C major—the 
only nearest-neighbor key—has only two tonic-triad notes within the A minor scale. 
Together, these two factors explain why a major scale is judged by the model as more 
ambiguous than a harmonic minor one. I will argue that this difference between ma-
jor and minor scales has interesting musical consequences. 

2.2.3 Tonalness 
Finally, we consider tonalness. I defined tonalness earlier as “the degree to which a 
set seems characteristic of the language of common-practice tonality.” In probabilistic 
terms, we can think of this as the overall probability of a set occurring in a short seg-
ment of a tonal piece—P(pcset). By basic rules of probability, 

  (3) P(pcset) = ∑ P(pcset ∩ key) = ∑ P(pcset | key) P(key) 
key                                           key   
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We already derived an expression for P(pcset|key) [see equation (1) above]. If we as-
sume that each key has an equal probability of 1/24, we can easily calculate the ex-
pression above. This gives us a measure of the probability of occurrence of a pitch-
class set. 

Table 2.2 shows tonalness values for some of the same sets considered earlier with 
regard to ambiguity. The tonalness value itself—the overall probability of the set—is 
shown in the left-hand column. It can be seen that, among three-pc sets, the major 
and minor triad have higher probability than the diminished triad, which in turn has 
higher probability than [C-C#-D]. No doubt this is because the major and minor tri-
ads are highly probable in combination with certain keys, namely keys in which they 
are diatonic triads (and the tonic triad in particular). By contrast, the set [C-C#-D] is 
not particularly probable given any key, as it will always contain at least one chro-
matic note. This is made clear by the second column, which shows the joint probabil-
ity of each set with its most probable key. The table also shows the probabilities of 
several larger pitch-class collections. It can be seen that the major scale is somewhat 
more probable than the harmonic minor scale; both are much more probable than the 
whole-tone scale, the octatonic scale, and [0123456].3 

An interesting issue that arises here is the relationship between clarity and tonalness. 
Table 2.2 gives both tonalness and clarity ratings for the same sets, so that these val-
ues can be compared. One might assume, at first thought, that clarity and tonalness 
usually go together. Famously ambiguous (low-clarity) sets such as the octatonic 
scale and whole-tone scale are low in tonalness; highly tonal scale collections such as 
the major and harmonic minor scales are high in clarity. However, consider the set 
[C-D-E-G-A-B]—sometimes known as the diatonic hexachord. This set is very low in 
clarity, but it is rather high in tonalness; its tonalness value is much higher than that 
of the whole-tone scale, which also has six notes. The high tonalness of this set is due 
to the fact that it is highly probable given two different keys (C major and G major), 
but this also accounts for its low clarity. Could there also be pitch-class sets which are 
low in tonalness, but high in clarity? This is more difficult to imagine; if a set is low 
in tonalness, it is unlikely to be contained in any major or harmonic minor scale, but 
any such set would probably tend to be low in clarity as well. 

2.3 Applications 
In the first half of this article, I presented ways of quantifying the tonal implication, 
tonal ambiguity, and tonalness of a pitch-class set. I submit that these measures ac-
cord rather well with our intuitions about the tonal properties of different sets. There 
are a number of applications of this theory that might be considered. I would like to 
focus here on the measurement of tonal ambiguity, and how this can shed light on 
several issues of compositional practice and tonal analysis. 
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Best key (with 
P(key|pcset)) 

Second-best key (with 
P(key|pcset)) 

Tonal clarity score 

 
Chords 
 
C-E-G (C major triad) 

 
 
C         (.597) 

 
 
Em      (.130) 

 
 
  4.60 

C-Eb-G (C minor triad) Cm     (.550) Eb       (.134)   4.11 

C-Eb-Gb (C dim. triad) Bbm   (.136) Cm     (.122)   1.11 

C-C#-D ([012]) Gm     (.112) F#m    (.089)   1.26 

 
Larger sets 
 
C-D-E-F-G-A-B 
(C major scale) 

 
 
 
C        (.658) 

 
 
 
Am     (.159) 

 
 
 
  4.14 

C-D-Eb-F-G-Ab-B  
(C harmonic minor scale) 

Cm    (.908) Eb       (.054) 16.78 

C-D-E-F#-Ab-Bb  
(Whole-tone scale) 

Gm    (.100) C#m   (.100)   1.00 

C-D-Eb-F-Gb-Ab-A-B  
(Octatonic scale) 

Ebm  (.190) Cm     (.190)   1.00 

C-C#-D-Eb-E-F-F# 
([0123456]) 

Db     (.218) Bbm   (.214)   1.02 

 
Other sets 
 
C-Eb-F#-A 

 
 
Em   (.192) 

 
 
C#m   (.192) 

 
 
  1.00 

C-D-E-G-B C      (.481) G         (.373)   1.29 

C-D-E-G-A-B G      (.438) C         (.342)   1.28 

C-D-Eb-F-G-Ab Cm   (.713) Eb       (.180)   3.95 

D-Eb-F-G-Ab Eb     (.460) Cm     (.425)   1.08 

 
Cadence sets 
 
V-I (C-D-E-G-B) 

 
 
C      (.481) 

 
 
G         (.373) 

 
 
  1.29 

V7-I (C-D-E-F-G-B) C      (.832) Am     (.047) 17.71 

V-i (C-D-Eb-G-B) Cm   (.684) G         (.161)   4.25 

V7-i (C-D-Eb-F-G-B) Cm   (.842) C         (.056) 15.03 

 

Table 2.1.  Tonal clarity values for some common pitch-class sets. 
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Pitch-class set Overall 

probability  
of set 
(“tonalness”) 

Joint probability 
of set with most 
probable key 

Tonal clarity 
score 

C-E-G (major triad) .00173 .00103        (C)   4.60 

C-Eb-G (minor triad) .00178 .00098        (Cm)   4.11 

C-Eb-Gb (dim. triad) .00032 .00004        (Bbm)   1.11 

C-C#-D ([012]) .00022 .00002        (Gm)   1.26 

C-D-E-F-G-A-B 
(major scale) .00049 .00032        (C)   4.14 

C-D-Eb-F-G-Ab-B 
(harmonic minor scale) .00028 .00025        (Cm) 16.78 

C-D-E-F#-Ab-Bb  
(whole-tone scale) .00001 .000001      (Gm*)   1.00 

C-D-Eb-F-Gb-Ab-A-B 
(octatonic scale) .000004 .0000007    (Ebm*)   1.00 

C-C#-D-Eb-E-F-F# 
([0123456]) .000006 .000001      (Db)   1.02 

C-D-E-G-A-B 
(diatonic hexachord) .00111 .00049        (G)   1.28 

Table 2.2.  Tonalness of some common pitch-class sets. Symmetrical sets (such as the whole-
tone scale, octatonic scale, and aggregate) yield equal probability judgments for multiple keys; 
in this case the model makes an arbitrary decision. 

2.3.1 Cadential Usage 
The first issue concerns the use of cadences. It is well known that most tonal pieces 
(and large sections of pieces) end with a “perfect authentic cadence”: a root-position 
V chord followed by a root-position I, with the tonic pitch in the melody of the I 
chord. This is almost required at the end of a piece—at least, if the composer intends 
to create a sense of full closure in the tonic key. The key of the piece may be either 
major or minor, and the V chord may be either a V triad or a V7 chord; this creates 
four possibilities, as shown in Figure 2.5. 
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Figure 2.5.  Perfect cadences: (a) V-I in major, (b) V7-I in major, (c) V-i in minor, (d) V7-i 
in minor. 

The four progressions shown in the figure yield four different pitch-class sets, with 
differing degrees of ambiguity (see the final section of Table 1, “cadence sets”). Both 
progressions involving V7 are extremely high in clarity, as is the V–i progression in 
minor, employing [C-D-Eb-G-B]. The V–I progression in major, however, employs 
the set [C-D-E-G-B]. This set is fully contained in two major scales, C major and G 
major (and no harmonic minor scales); moreover, it contains the tonic triads of both 
keys. Since the set is equally compatible with the two keys at both scalar and triadic 
levels, we would expect it to be highly ambiguous; the model confirms this, assign-
ing a clarity value of just 1.29. This suggests that the V–I progression should seem 
less decisive than the V–i progression in its key implications. To my ears, this is in-
deed the case. Admittedly, a progression like that in Figure 5a (even out of context) 
implies C major more strongly than G major (probably because this two-chord ges-
ture has strong cadential associations), but it lacks the unshakable confidence and 
certainty of Figure 5c. (This point relates to our earlier discussion of the major and 
harmonic minor scales, where we observed that the harmonic minor is higher in clar-
ity than the major scale.)

These observations suggest a prediction about compositional practice. At the final 
cadence of a piece, we can assume that composers (at least in the common-practice 
period) generally sought to achieve a maximal sense of tonal stability and closure. 
Thus we might expect, in final cadences of major-key pieces, that composers would 
tend to favor V7–I over V–I cadences, given the rather low clarity of the V–I variant. 
In minor-key pieces, by contrast, both the V7–i and V–i variants of the cadence are 
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very high in clarity; thus the current theory does not predict any strong preference 
for the V7–i variant. 

This prediction was tested with regard to three corpora: the piano sonatas of Haydn, 
Mozart, and Beethoven. All movements in all sonatas of all three composers (with 
the exception of Haydn’s early piano sonatas) were examined to see if the key was 
major or minor and if the final cadence contained a V or V7 chord. Table 2.3 shows 
the results. For all three composers, it can be seen that the proportion of V–I cadences 
in minor-key movements is much higher than in major-key movements; in all three 
corpora, this difference is statistically significant. Thus, for the classical-period com-
posers at least, there does indeed seem to be a stronger preference for V7 over V with 
major-key pieces, just as the current model predicts. 

 Haydn Mozart Beethoven 

 Major Minor Major Minor Major Minor 

V 2 (12.5%) 4 (80.0%) 5 (23.8%) 2 (66.7%) 4 (15.4%) 8 (72.7%) 

V7 14 
(87.5%) 

1 (20.0%) 16 
(76.2%) 

1 (33.3%) 22 (83.6%) 3 (27.2%) 

Total 16   5 21   3   26 11 

 P
2 = 8.5, p<.01)  P

2 = 2.3, p<.13)  P
2 = 11.6, p<.001)  

Table 2.3. Final cadences in Haydn, Mozart, and Beethoven piano sonatas. This table 
represents information about the final cadences of movements in piano sonatas by Haydn, 
Mozart, and Beethoven. All Haydn sonatas from Hob. XIV:27 onward were examined, as well 
as all Mozart and Beethoven sonatas. “Major” or “minor” indicates the key of the movement; 
“V” or “V7” indicates whether the dominant of the final cadence is a V or V7. An objective 
algorithm, which will not be described here, was used to identify the final cadence of the piece. 
A number of movements were eliminated from consideration because they had no clear final 
cadence according to this algorithm. 

2.3.2 Ambiguous Sets in Common-Practice Pieces 
Here I consider some highly ambiguous pitch-class sets and some interesting uses of 
these sets in common-practice pieces. As noted earlier, it is well known that certain 
scalar collections are highly ambiguous, such as the whole-tone and octatonic scales. 
Also well known is the ambiguity of certain tonal chords, such as the diminished 
seventh chord. This, too, is a symmetrical pitch-class set; the chord [C-Eb-F#-A] con-
tains the scale degrees 7-2-4-6 in E minor, and contains the same degrees in C# minor, 
G minor, and Bb minor. Naturally, then, the model assigns it the minimal clarity 
score of 1.0 (see Table 2.1). A passage built on a diminished seventh chord gives an 
effect of extreme tonal instability and disorientation, as in the development section of 
Beethoven’s Appassionata sonata. Common-practice composers sometimes also em-
ploy ambiguous pitch-class sets in more subtle ways. Consider the set [C-D-E-G-B]—
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a highly ambiguous set, as discussed above. A very simple use of this set, one which 
seems to maximize its tonal ambiguity, is found in the opening of Chopin’s Mazurka 
Op. 24 No. 2 (Figure 2.6). The passage alternates between a C major triad and a G 
major triad, both in root position—thus even harmonic factors cannot really tip the 
balance to one key or the other. (Even the metrical placement of the chords seems de-
liberately evenhanded: the “cross-rhythm” pattern places C major on the downbeat 
in mm. 1 and 3, and G major in mm. 2 and 4.) The progression begins on a C major 
chord, perhaps slightly favoring C major—but one might just as well say that ending 
on a G major chord favors that key. The piece proves to be in C major, in fact, but one 
could just as easily imagine it continuing in G major. 

Figure 2.6.  Chopin, Mazurka Op. 24, No. 2, mm. 1–4. 

If one adds an A to the set discussed above, this produces [C-D-E-G-A-B], sometimes 
known as the “diatonic hexachord.” As discussed earlier, this set too is highly am-
biguous, as it occurs in two major scales (C major and G major) and contains both 
complete tonic triads; its clarity value is just 1.28. An example of this set (transposed 
to [G-A-B-D-E-F#], implying G major or D major) is seen in the first two measures of 
the aria of Bach’s Goldberg Variations (Figure 2.7). 

Figure 2.7.  Bach, Goldberg Variations (BWV 988), Aria, mm. 1–8. 
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As in the Chopin mazurka, the harmony is also equivocal between these two keys: G 
major in m. 1 followed by D major in m. 2, with the root featured prominently in the 
melody in both cases. The following two measures introduce C#, tonicizing D major; 
but the following four measures (mm. 5-8) replace C# with C, and establish G major 
beyond all doubt. One might question whether mm. 1–2 are really ambiguous. Of 
course, we know (if we know the piece) that it is in G major, and that may bias us 
toward a G major interpretation over a D major one. I would argue, however, that 
mm. 1-2 do contain a subtle element of ambiguity. A I–V6 progression, though per-
haps favoring the first chord as tonic because of its primacy, can also be interpreted 
as IV–I6 (favoring the second chord as tonic) without difficulty. Admittedly, the ef-
fect of the ambiguity in the Bach is very different from that of the Appassionata devel-
opment section. The feeling here is not one of complete disorientation, as in that case, 
but rather a subtle undercurrent of indecision or equivocation between two clear al-
ternatives, followed by a leaning toward one (D major in mm. 3–4) and then a much 
stronger commitment to the other (G major in mm. 5–8). 

Several other pitch collections deserve consideration with regard to ambiguity. One 
is [C-D-Eb-F-G-Ab]—sometimes called a minor hexachord. In scalar terms, this set is 
ambiguous between two “relative” keys, C minor and Eb major in this case. How-
ever, there is an important difference between this and the diatonic hexachord; in this 
case, the C minor tonic triad is fully included in the set, while the Eb major triad is 
not. Thus we would expect the model to favor C minor quite strongly, and it does, 
assigning a clarity value of 3.95. This seems true to perception. Even in cases where 
the set is presented in such a way that it does not strongly outline a particular har-
mony, the minor key seems to prevail over the major one. The opening of Schoen-
berg’s Verklärte Nacht is one example, where a downward scalar presentation of the 
hexachord ([Bb-A-G-F-E-D]) seems to favor D minor over F major (Figure 2.8). Of 
course, this is reinforced by the D pedal tone; but even disregarding this, the D minor 
implication seems to prevail. (Another factor in this case is that the D in the descend-
ing hexachord is not followed closely by step; this tends to favor it as a chord-tone, 
thus implying D minor harmonically. If we imagine the pattern in reverse, [D-E-F-G-
A-Bb], the leaning towards D minor is somewhat less strong, but still present, in my 
opinion.) 

 

Figure 2.8.  Schoenberg, “Verklärte Nacht,” mm. 1–4. 
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A more ambiguous case is the set [D-Eb-F-G-Ab], the same as the minor hexachord 
except with the C deleted. This set is still ambiguous between the same two keys (C 
minor and Eb major) in scalar terms, but now it has exactly two notes from the tonic 
triad of each (Eb and G from C minor, and Eb and G from Eb major)—though the fact 
that it contains the tonic of Eb major and not of C minor may slightly favor the for-
mer. We would therefore expect the set to be quite evenly balanced between these 
two keys, and the model agrees, assigning a clarity score of 1.08. The ambiguity of 
this set is sometimes exploited quite effectively; a well-known example is the open-
ing of Brahms’s Clarinet Quintet, using [C#-D-E-F#-G] (implying D major or B minor) 
(Figure 2.9). 

 

Figure 2.9.  Brahms, Clarinet Quintet, first movement, mm. 1–5. 

The harmony in this passage is also equivocal between the two keys, but in a differ-
ent way from the examples considered earlier: in this case, the harmony itself is am-
biguous, as the root of mm. 1 and 2 could be either B or D. Having presented these 
two tonalities, the piece as a whole unfolds as a series of ever larger oscillations be-
tween them: to B minor in m. 3, then to D major in mm. 4–8, then to B minor in mm. 
9–28, then to D major for the second half of the exposition and finally returning to B 
minor in the recapitulation. 

I began this paper by presenting a probabilistic model of the tonal implications of 
pitch-class sets and then showed how this could lead to ways of predicting the tonal 
ambiguity and tonalness of sets as well. I then suggested that this model yielded an 
interesting prediction about compositional practice—that composers would favor 
V7–I over V–I cadences more in major-key pieces than minor-key pieces; a study of 
cadence usage by classical composers confirmed this prediction. Finally, we consid-
ered some uses of highly ambiguous pitch-class sets in common-practice music, find-
ing that composers seem to have appreciated the ambiguity of these sets and ex-
ploited it in interesting ways. It seems, then, that exploring the tonal properties of 
pitch-class sets is a worthwhile endeavor that can shed light on a number of issues in 
common-practice music. 
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Notes 
1. An important exception is the recent body of work on “scale theory”—for example, Browne 
1981, Carey and Clampitt 1989, and Clough and Douthett 1991. These authors examine basic 
tonal structures such as the major triad and the diatonic scale, construed as pitch-class sets. 
However, they focus mainly on the mathematical properties of these sets, rather than on their 
perceptual properties or compositional uses. 

2. However, the pitch-class content of a set surely constrains its properties. While one could re-
alize [C-D-E-F] to imply C major or F major, one would be hard pressed to find a realization 
that implied F# major, for example. 

3. Notice that the overall probability figures in Table 2.2 tell us only the probability of one par-
ticular transposition of each set: for example, the C major scale. We could also consider the 
probability of a certain type of set, or “Tn set-type” (Rahn 1980)—for example, major scales in 
general. This would be given by the probability of one transposition of the set, multiplied by 
the number of distinct transpositions. In the case of the major scale, the set-type probability is 
.00049 × 12; in the case of the whole-tone scale, it is .00001 × 2, since there are only two distinct 
whole-tone scales. We will focus on particular transpositions of sets here, rather than set-types, 
though the two approaches usually lead to quite similar results; the major scale is far more 
probable than the whole-tone scale, whether one considers a single transposition of the set or 
all transpositions. 
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