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Abstract

This study presents a probabilistic model of melody perception, which infers the key of a melody and
also judges the probability of the melody itself. The model uses Bayesian reasoning: For any “surface”
pattern and underlying “structure,” we can infer the structure maximizing P (structure | surface) based
on knowledge of P(surface, structure). The probability of the surface can then be calculated as

∑

P(surface, structure), summed over all structures. In this case, the surface is a pattern of notes; the
structure is a key. A generative model is proposed, based on three principles: (a) melodies tend to
remain within a narrow pitch range; (b) note-to-note intervals within a melody tend to be small; and
(c) notes tend to conform to a distribution (or key profile) that depends on the key. The model is tested in
three ways. First, it is tested on its ability to identify the keys of a set of folksong melodies. Second, it is
tested on a melodic expectation task in which it must judge the probability of different notes occurring
given a prior context; these judgments are compared with perception data from a melodic expectation
experiment. Finally, the model is tested on its ability to detect incorrect notes in melodies by assigning
them lower probabilities than the original versions.

Keywords: Music cognition; Probabilistic modeling; Expectation; Key perception

1. Introduction

In hearing and understanding the notes of a melody, the listener engages in a complex
set of perceptual and cognitive processes. The notes must first be identified: the individual
partials of the sound must be grouped into complex tones, and these tones must be assigned
to the correct pitch categories. The listener then evaluates the notes, judging each one as to
whether it is appropriate or probable in the given context. Thus, the listener is able to identify
incorrect or deviant notes—whether these are accidental errors by the performer or deliberate
surprises injected by the composer. The listener also infers underlying musical structures
from the note pattern: the key, the meter, and other kinds of musical information. Finally,
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the listener forms expectations about what note will occur next and can judge whether these
expectations are fulfilled or denied.

All of these processes—note identification, error detection, expectation, and perception
of underlying structures—would seem to lend themselves to a probabilistic treatment. The
listener is able to judge the probability of different note sequences occurring and brings this
knowledge to bear in determining what notes did occur, whether they were intended, and what
notes are likely to occur next. The identification of structures such as key and meter could
well be viewed from a probabilistic perspective, as well: The listener hears a pattern of notes
and must determine the most probable underlying structure (of whatever kind) given those
notes.

These cognitive musical processes might be divided into those concerned with the
pattern of notes itself, which I will call surface processes, and those concerned with the
identification of underlying structures, which I will call structural processes. Surface
processes include pitch identification, error detection, and expectation; structural pro-
cesses include the perception of meter and key. Notwithstanding this distinction, surface
processes and structural processes are closely intertwined. Obviously, identification of
underlying structures depends on the identification of the note pattern from which they
are inferred. In addition, however, the musical structures that are inferred then guide the
perception of the surface. For example, it seems reasonable to suppose—and there is
indeed evidence for this, as will be discussed—that our judgment of the key of a melody
will affect our expectations of what note will occur next. This raises the possibility that
both surface and structural processes might be accommodated within a single cognitive
model.

In what follows, I propose a unified probabilistic model of melody perception. The model
infers the key of a note pattern; it also judges the probability of the note pattern (and possible
continuations of the pattern), thus providing a model of error detection and expectation. (The
model only considers the pitch aspect of melody, not rhythm; the rhythmic aspect of melody
perception is an enormously complex and largely separate issue, which we will not address
here.) The model is designed to simulate the perception of Western tonal music by listeners
familiar with this idiom.1 The model uses the approach of Bayesian probabilistic modeling.
Bayesian modeling provides a way of identifying the hidden structures that lie beneath, and
give rise to, a surface pattern. At the same time, the Bayesian approach yields a very natural
way of evaluating the probability of the surface pattern itself.

I begin by presenting an overview of the model and its theoretical foundation. I then examine,
in more detail, the model’s handling of three problems: key finding, melodic expectation, and
melodic error detection. In each case, I present systematic tests of the model’s performance. In
the case of key finding, the model’s output is compared to “expert” judgments of key on a cor-
pus of folk melodies (and also on a corpus of Bach fugue themes); in the case of expectation,
the output is compared to data from a perception experiment (Cuddy & Lunney, 1995). In the
case of error detection, the model is tested on its ability to distinguish randomly deformed ver-
sions of melodies from the original versions. I will also examine the model’s ability to predict
scale-degree tendencies and will discuss its relevance to the problem of pitch identification.
Finally, I consider some further implications of the model and possible avenues for further
development.
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2. Theoretical foundation

Bayesian probabilistic modeling has recently been applied to many problems of information
processing and cognitive modeling, such as decision-making (Osherson, 1990), vision (Knill
& Richards, 1996; Olman & Kersten, 2004), concept learning (Tenenbaum, 1999), learning of
causal relations (Sobel, Tenebaum, & Gopnik, 2004), and natural language processing (Eisner,
2002; Jurafsky & Martin, 2000; Manning & Schütze, 2000). To bring out the connections
between these domains and the current problem, I present the motivation for the Bayesian
approach in a very general way. In many kinds of situations, a perceiver is presented with
some kind of surface information (which I will simply call a surface) and wants to know
the underlying structure or content that gave rise to it (which I will call a structure). This
problem can be viewed probabilistically, in that a given surface may result from many different
structures; the perceiver’s goal is to determine the most likely structure, given the surface.
Using Bayes’ rule, the probability of a structure given a surface can be related to the probability
of the surface given the structure:

P (structure | surface) = P (surface | structure)P (structure)
P (surface)

(1)

The structure maximizing P(structure | surface) will be the one maximizing the expression
on the right. Since P(surface), the overall probability of the surface, will be the same for all
structures, it can simply be disregarded. To find the most probable structure given a surface,
then, we need only know—for all possible structures—the probability of the surface given the
structure, and the overall (“prior”) probability of the structure:

P (structure | surface) ∝ P (surface | structure)P (structure) (2)

By a basic rule of probability, we can rewrite the right-hand side of this expression as the joint
probability of the structure and surface:

P (structure | surface) ∝ P (surface, structure) (3)

Also of interest is the overall probability of a surface. This can be formulated as P(structure,
surface), summed over all possible structures:

P (surface) =
∑

structure

P (surface, structure) (4)

To illustrate the Bayesian approach, let us briefly consider two examples in the domain of
natural language processing. In speech recognition, the task is to determine the most probable
sequence of words given a sequence of phonetic units or “phones”; in this case, then, the
sequence of words is the structure and the sequence of phones is the surface. This can be done
by estimating, for each possible sequence of words, the prior probability of that word sequence,
and the probability of the phone sequence given the word sequence (Jurafsky & Martin, 2000).
Another relevant research area has been syntactic parsing; in this case, we can think of the
sequence of words as the surface, while the structure is some kind of syntactic representation.
Again, to determine the most probable syntactic structure given the words, we can evaluate
the probability of different syntactic structures and the probability of the word sequence given

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
R
o
c
h
e
s
t
e
r
]
 
A
t
:
 
1
8
:
5
7
 
2
2
 
S
e
p
t
e
m
b
e
r
 
2
0
0
8



D. Temperley/Cognitive Science 32 (2008) 421

those structures; this is essentially the approach of most recent computational work on syntactic
parsing (Manning & Schütze, 2000). Thus, the level of words serves as the structure to the more
superficial level of phones and as the surface to the more structural level of syntactic structure.

In the model presented below, the surface is a pattern of notes, while the structure is a key.
Much like syntactic parsing and speech recognition, we can use Bayesian reasoning to infer
the structure from the surface. We can also use this approach to estimate the probability of the
surface itself. As argued earlier, such surface probabilities play an important role in music cog-
nition, contributing to such processes as pitch identification, error detection, and expectation.

As models of cognition, Bayesian models assume that people are sensitive to the frequencies
and probabilities of events in their environment. In this respect, the approach connects nicely
with other current paradigms in cognitive modeling, such as statistical learning (Saffran,
Johnson, Aslin, & Newport, 1999) and statistical models of sentence processing (Juliano &
Tanenhaus, 1994; MacDonald, Pearlmutter, & Seidenberg, 1994). The Bayesian perspective
also provides a rational basis for the setting of parameters. In calculating P(surface, structure)
for different structures and surfaces, it makes sense to base these probabilities on actual
frequencies of events in the environment. This is the approach that will be taken here.

The application of probabilistic techniques in music research is not new. A number of studies
in the 1950s and 1960s applied concepts from information theory—for example, calculating
the entropy of musical pieces or corpora by computing transitional probabilities among surface
elements (Cohen, 1962; Hiller & Fuller, 1967; Youngblood, 1958). Others have applied prob-
abilistic approaches to the generation of music (Conklin & Witten, 1995; Ponsford, Wiggins,
& Mellish, 1999). Very recently, a number of researchers have applied Bayesian approaches to
musical problems. Cemgil and colleagues (Cemgil & Kappen, 2003; Cemgil, Kappen, Desain,
& Honing, 2000) propose a Bayesian model of meter perception, incorporating probabilis-
tic knowledge about rhythmic patterns and performance timing (see also Raphael, 2002a).
Kashino, Nakadai, Kinoshita, and Tanaka (1998) and Raphael (2002b) have proposed Bayesian
models of transcription—the process of inferring pitches from an auditory signal. And Bod
(2002) models the perception of phrase structure using an approach similar to that of proba-
bilistic context-free grammars. Aside from its general Bayesian approach, the current study has
little in common with these earlier studies. No doubt this simply reflects differences between
the problems under investigation: Key identification is a very different problem from meter
perception, transcription, and phrase perception.2 It seems clear, however, that these aspects of
music perception are not entirely independent, and that a complete model of music cognition
will have to integrate them in some way. We will return to this issue at the end of the article.

We now turn to a description of the model. While the model is primarily concerned with
perception, it assumes—like most Bayesian models—a generative process as well: we infer
a structure from a surface, based on assumptions about how surfaces are generated from
structures. Thus, I will begin by sketching the generative model that is assumed.

3. The model

The task of the generative model is to generate a sequence of pitches (no rhythmic informa-
tion is generated). To develop such a model, we must ask: what kind of pitch sequence makes

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
R
o
c
h
e
s
t
e
r
]
 
A
t
:
 
1
8
:
5
7
 
2
2
 
S
e
p
t
e
m
b
e
r
 
2
0
0
8
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Fig. 1. Distribution of pitches in the Essen Folksong Collection. Pitches are represented as integers, with C4
(middle C) = 60.

a likely melody? Perhaps the most basic principle that comes to mind is that a melody tends
to be confined to a fairly limited range of pitches. Data were gathered about this from a cor-
pus of 6,149 European folk melodies, the Essen Folksong Collection (Schaffrath, 1995). The
melodies have been computationally encoded with pitch, rhythm, key, and other information
(Huron, 1999).3

If we examine the overall distribution of pitches in the corpus (Fig. 1), we find a roughly
normal distribution, with the majority of pitches falling in the octave above C4 (“middle
C”). Following the usual convention, we will represent pitches as integers, with C4 = 60.)
Beyond this general constraint, however, there appears to be an additional constraint on the
range of individual melodies. Although the overall variance of pitches in the Essen corpus
is 25.0, the variance of pitches within a melody—that is, with respect to the mean pitch of
each melody—is 10.6. We can model this situation in a generative way by first choosing a
central pitch c for the melody, randomly chosen from a normal distribution, and then creating
a second normal distribution centered around c which is used to actually generate the notes. It
is important to emphasize that the central pitch of a melody is not the tonal center (the tonic or
“home” pitch), but rather the central point of the range. In training, we can estimate the central
pitch of a melody simply as the mean pitch rounded to the nearest integer (we assume that c
is an integer for reasons that will be explained below). In the Essen collection, the mean of
mean pitches is roughly 68 (Ab4), and the variance of mean pitches is 13.2; thus, our normal
distribution for choosing c, which we will call the central pitch profile, is N(c; 68, 13.2). This
normal distribution, like others discussed below, is converted to a discrete distribution taking
only integer values. The normal distribution for choosing a series of pitches pn (the range
profile) is then N(pn; c, vr ). A melody can be constructed as a series of notes generated from
this distribution.

A melody generated from a range profile—assuming a central pitch of 68 and variance
of 10.6—is shown in Fig. 2a.4 While this melody is musically deficient in many ways, two
problems are particularly apparent. One problem is that the melody contains several wide
leaps between pitches. In general, intervals between adjacent notes in a melody are small; this
phenomenon of “pitch proximity” has been amply demonstrated as a statistical tendency in
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Fig. 2. (A) A melody generated from a range profile. (B) A melody generated from the final model.

actual melodies (von Hippel, 2000; von Hippel & Huron, 2000) and also as an assumption and
preference in auditory perception (Deutsch, 1999; Miller & Heise, 1950; Schellenberg, 1996).5

Figure 3 shows the distribution of “melodic intervals” in the Essen corpus—pitches in relation
to the previous pitch; it can be seen that more than half of all intervals are two semitones or less.
We can approximate this distribution with a proximity profile—a normal distribution, N(pn;
pn−1, vp), where pn−1 is the previous pitch. We then create a new distribution which is the
product of the proximity profile and the range profile. In effect, this “range × proximity” (RP)
profile favors melodies which maintain small note-to-note intervals but also remain within a
fairly narrow global range. Notice that the RP profile must be recreated at each note, as it
depends on the previous pitch. For the first note, there is no previous pitch, so this is generated
from the range profile alone.

The range and proximity profiles each have two parameters, the mean and the variance. The
mean of the range profile varies from song to song, and the mean of the proximity profile varies
from one note to the next. The variances of the two profiles, however—vr and vp—do not

Fig. 3. Melodic intervals in the Essen corpus, showing the frequency of each interval size as a proportion of all
intervals. (For example, a value of −2 indicates a note two semitones below the previous note.)
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appear to vary greatly across songs; for simplicity, we will assume here that they are constant.
The problem is then to estimate them from the Essen data. We could observe the sheer variance
of pitches around the mean pitch of each melody, as we did above (yielding a value of 10.6).
But this is not the same as vr ; rather, it is affected by both vp and vr . (Similarly, the sheer
variance of melodic intervals, as shown in Fig. 3, is not the same as vp.) So another method
must be used. It is a known fact that the product of two Gaussians (normal distributions) is
another Gaussian, N(pn; mc, vc), whose mean is a convex combination of the means of the
Gaussians being multiplied (Petersen & Petersen, 2005):

N(pn; c, vr )N(pn; pn−1, vp) ∝ N(pn; mc, vc) (5a)

where

vc = vrvp/(vr + vp) (5b)

and

mc = cvp + pn−1vr

vr + vpt
(5c)

By hypothesis, the first note of each melody is affected only by the range profile, not the
proximity profile. So the variance of the range profile can be estimated as the variance of the
first note of each melody around its mean; in the Essen corpus, this yields vr = 29.0. Now
consider the case of non-initial notes of a melody where the previous pitch is equal to the
central pitch (pn−1 = c); call this pitch x. (It is because of this step that we need to assume
that c is an integer.) At such points, we know from Equation 5c that the mean of the product
of the two profiles is also at this pitch:

mc = xvp + xvr

vr + vp

= x (6)

Thus, we can estimate vc as the observed variance of pitches around pn−1, considering only
points where pn−1 = c. The Essen corpus yields a value of vc = 5.8. Now, from Equation 5b,
we can calculate vp as 7.2.

Another improbable aspect of the melody in Fig. 2a is that the pitches do not seem to
adhere to any major or minor scale. In a real melody, by contrast (at least in the Western
tonal tradition), melodies tend to adhere to the scale of a particular key. A key is a framework
of pitch organization, in which pitches are understood to have varying degrees of stability
or appropriateness. There are 24 keys: 12 major keys (one named after each pitch class,
C, C#, D. . .B) and 12 minor keys (similarly named). To incorporate key into the model,
we adopt the concept of key profiles. A key profile is a 12-valued vector representing the
compatibility of each pitch class with a key (Krumhansl, 1990; Krumhansl & Kessler, 1982).
In the current model, key profiles are construed probabilistically: the key profile values
represent the probability of a pitch class occurring, given a key. The key profile values were
set using the Essen corpus; the corpus provides key labels for each melody, allowing pitch
class distributions to be tallied in songs of each key. This data were then aggregated over all
major keys and all minor keys, producing data as to the frequency of scale degrees, or pitch
classes in relation to a key. (For example, in C major, C is scale degree 1, C# is #1, and D is 2;
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Fig. 4. Key profiles generated from the Essen Folksong Collection for major keys (above) and minor keys (below).

in C# major, C# is 1; and so on.) The resulting key profiles are shown in Fig. 4. The profiles
show that, for example, 18.4% of notes in major-key melodies are scale degree 1. The profiles
reflect conventional musical wisdom, in that pitches belonging to the major or minor scale of
the key have higher values than other pitches, and pitches of the tonic chord (the 1, 3, and 5
degrees in major or the 1, b3, and 5 degrees in minor) have higher values than other scalar ones.

The key profiles in Fig. 4 can be used to capture the fact that the probability of pitches
occurring in a melody depends on their relationship to the key. However, key profiles only
represent pitch class, not pitch: they do not distinguish between middle C, the C an octave
below, and the C an octave above. We address this problem by duplicating the key profiles
over several octaves. We then multiply the key profile distribution by the RP distribution,
normalizing the resulting combined distribution so that the sum of all values is still 1; we will
call this the RPK profile. Fig. 5 shows an RPK profile, assuming a key of C major, a central
pitch of 68 (Ab4), and a previous note of C4. In generating a melody, then, we must construct
the RPK profiles anew at each point, depending on the previous pitch. (For the first note, we
simply use the product of the range and key profiles.) Fig. 2b shows a melody generated by
this method, assuming a key of C major and a central pitch of Ab4. It can be seen that the
pitches are all within the C major scale, and that the large leaps found in Fig. 2a are no longer
present.
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Fig. 5. An RPK profile, assuming a central pitch of Ab4, a previous pitch of C4, and a key of C major.

The generative process thus requires the choice of a key and central pitch and the generation
of a series of pitches. The probability of a pitch occurring at any point is given by its RPK
profile value: the normalized product of its range profile value (given the central pitch), its
proximity profile value (given the previous pitch), and its key profile value (given the chosen
key).6 The model can be represented graphically as shown in Fig. 6. The joint probability of
a pitch sequence with a key k and a central pitch c is

P (pitch sequence, k, c) = P (k)P (c)
∏

n
P (pn | pn−1, k, c) = P (k)P (c)

∏
RPKn (7)

where pn is the pitch of the nth note and RPKn is its RPK profile value. As noted earlier, P(c)
is determined by the central pitch profile. (In principle, c could take an infinite range of integer
values; but when c is far removed from the pitches of the melody, its joint probability with the
melody is effectively zero.) As for P(k), we assume that all keys are equal in prior probability,
since most listeners—lacking “absolute pitch”—are incapable of identifying keys in absolute
terms; however, we assign major keys a higher probability than minor keys, reflecting the
higher proportion of major-key melodies in the Essen collection. (P (k) = .88/12 for each
major key, .12/12 for each minor key.)

Fig. 6. A graphical representation of the model. The central pitch, key, and pitches are random variables; the RPK
profiles are deterministically generated from the key, central pitch, and previous pitch.
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The joint probability of a pitch sequence with a key (which will be important in what
follows) sums the quantity in Equation 7 over all central pitches:

P (pitch sequence, k) =
∑

c

[
P (k)P (c)

∏
n

RPKn

]

= P (k)
∑

c

[
P (c)

∏
n

RPKn

]
(8)

Finally, the overall probability of a melody sums the quantity in Equation 7 over all central
pitches and keys:

P (pitch sequence) =
∑

k,c

[
P (k)P (c)

∏
n

RPKn

]
(9)

Essentially, the model has five parameters: The mean of the central pitch profile; the
variances of the central pitch profile, range profile, and proximity profile; and the probability
of a major key versus a minor key.7 The variances of the range and proximity profiles determine
the “weight” of these factors in the RPK profile. If the proximity variance is very high, pitch
proximity will have little effect on the RPK profile and there will be little pressure for small
melodic intervals; if the range variance is very high, range will have little effect. If both the
range and proximity variances are large, neither range nor pitch proximity will have much
weight and the RPK profile will be determined almost entirely by the key profile.

The parameter values proposed above were extracted directly from the Essen corpus.
Another approach to parameter setting is also possible, using the technique of maximum
likelihood estimation (MLE). Since the model assigns a probability to any melody it is
given (Equation 9), one might define the optimal parameters as those which assign highest
probability to the data. Using a random sample of 10 melodies from the Essen corpus, a
simple optimization approach was used to find the MLE values for the parameters. Starting
with random initial values, one parameter was set to a wide range of different values, and the
value yielding the highest probability for the data was added to the parameter set; this was
done for all five parameters, and the process was iterated until no further improvement was
obtained.8 The entire process was repeated five times with different initial values; all five runs
converged to the same parameter set, shown in Table 1. This process is only guaranteed to find
a local optimum, not a global optimum, but the fact that all five runs converged on the same
parameter set suggests that this is indeed the global optimum. The optimized parameter set
assigns a log probability to the 10-song training set of −964.5, whereas the original parameter
set assigns a log probability of −976.2. Thus, the optimized parameter set achieves a slightly
higher probability, though the difference is very small (1.2%). (By contrast, the five sets
of random values used to initialize the optimization yielded an average log probability of
−1553.7.)

Having presented the generative model, we now examine how it might be used to model
three perceptual processes: key identification, melodic expectation, and error detection.
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Table 1
Parameter values for three versions of the model

Value Estimated Value Optimized Value Optimized
From Essen on 10-Song on Cuddy and

Parameter Corpus Training Set Lunney (1995) Data

Central pitch mean 68 68 64
Central pitch variance 13.2 5.0 13.0
Range variance 29.0 23.0 17.0
Proximity variance 7.2 10.0 70.0
Probability of a major key 0.88 0.86 0.66
Last note factor (on last note, degree 1 in

key profile is multiplied by this value)
— — 20.0

4. Testing the model on key finding

The perception of key has been the focus of a large amount of research. Experimental studies
have shown, first of all, that listeners—both musically trained and untrained—are sensitive to
key and that there is a good deal of agreement in the way key is perceived (Brown, Butler, &
Jones, 1994; Cuddy, 1997; Krumhansl, 1990). Other research has focused on the problem of
how listeners infer a key from a pattern of notes—sometimes called the “key finding” problem;
a number of models of this process have been put forth, both in psychology and in artificial
intelligence (see Temperley, 2001, for a review). We will just consider two well-known models
here and will compare their performance to that of the current probabilistic model.

Longuet-Higgins and Steedman (1971) proposed a model for determining the key of a
monophonic piece. Longuet-Higgins and Steedman’s model is based on the conventional
association between keys and scales. The model proceeds left to right from the beginning of
the melody; at each note, it eliminates all keys whose scales do not contain that note. When
only one key remains, that is the chosen key. If the model gets to the end of the melody
with more than one key remaining, it looks at the first note and chooses the key of which
that note is scale degree 1 (or, failing that, scale degree 5). If at any point all keys have been
eliminated, the “first note” rule again applies. An alternative approach to key finding was
proposed by Krumhansl and Schmuckler (described most fully in Krumhansl, 1990). The
Krumhansl-Schmuckler key-finding algorithm is based on a set of key profiles representing
the compatibility of each pitch class with each key. (The key profiles were derived from
experiments by Krumhansl & Kessler, 1982, in which listeners heard a context establishing
a key followed by a single pitch and judged how well the pitch “fit” given the context.) The
key profiles are shown in Fig. 7; as before, pitch classes are identified in relative or “scale
degree” terms. (Note the very strong qualitative similarity between the Krumhansl-Kessler
profiles and those derived from the Essen collection, shown in Fig. 4.) Given these profiles,
the Krumhansl-Schmuckler algorithm judges the key of a piece by generating an input vector
for the piece; this is, again, a vector of 12 values, showing the total duration of each pitch
class in the piece. The correlation is then calculated between each key profile vector and the
input vector; the key whose profile yields the highest correlation value is the preferred key.
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Fig. 7. Key profiles from Krumhansl and Kessler (1982) for major keys (above) and minor keys (below).

We now consider how the probabilistic model proposed above could be used for key finding.
The model’s task, in this case, is to judge the most probable key given a pitch sequence. It can
be seen from Equations 3 and 8 that, for a given key kx ,

P (kx | pitch sequence) ∝ P (pitch sequence, kx) = P (kx)
∑

c

[
P (c)

∏
n

RPKn

]
(10)

The most probable key given a melody is the one maximizing this expression.9

The model was tested on two different corpora. First, it was tested using the Essen Folksong
Collection—the same corpus described earlier and used for setting the model’s parameters.
A 65-song test set was extracted from the corpus (this portion of the corpus was not used in
parameter setting).10 The task was simply to judge the key of each melody. The model judged
the key correctly for 57 of the 65 melodies (87.7%; see Table 2). The same corpus was then
used to test the Longuet-Higgins/Steedman and Krumhansl-Schmuckler models (using my
own implementations). The Longuet-Higgins/Steedman model identified the correct key on 46
out of 65 melodies, or 70.8% correct; the Krumhansl-Schmuckler model identified the correct
key on 49 out of 65, or 75.4% correct. The second test used a corpus that has been widely
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Table 2
Results of key-finding tests of the current model (“probabilistic model”) and other models on two
different corpora

Test Corpus and Model # Correct % Correct

65-Song Essen folksong test set
Longuet-Higgins/Steedman model 46 70.8
Krumhansl-Schmuckler model 49 75.4
Probabilistic model 57 87.7

48 Fugue subjects from Bach’s Well-Tempered Clavier
Longuet-Higgins/Steedman model 48 100.0
Krumhansl-Schmuckler model 32 66.7
Vos and Van Geenen (1996) model 39 81.2
Temperley (2001) model 43 89.6
Probabilistic model 40 83.3
Probabilistic model with adjusted parameters 44 91.7

used for testing in other key finding studies—the 48 fugue subjects of Bach’s Well-Tempered
Clavier (“subject” in this case means the theme of a fugue). This corpus was first used by
Longuet-Higgins and Steedman, whose model chose the correct key in all 48 cases (100.0%
correct). Results for the current model and four other models are shown in Table 2.11 The
current model chose the correct main key in 40 of the 48 cases (83.3% correct). Inspection
of the results suggested that some of the model’s errors were due to a problem with the key
profiles: in minor keys, the b7 degree has a higher value than 7, whereas in the Bach corpus
(as in classical music generally), 7 is much more commonly used in minor keys than b7.
When scale degree b7 was given a value of .015 in the minor profile and scale degree 7 was
given .060, and the preference for major keys was removed, the correct rate of the model was
increased to 44 out of 48 cases (91.7% correct).

Altogether, the model’s key-finding performance seems promising. It is probably impossible
for a purely “distributional” key-finding model of any kind to achieve perfect performance;
in some cases, the temporal arrangement of pitches must also be considered (see Temperley,
2004, for further discussion of this issue). One might wonder, also, whether the “expert” key
judgments in the Essen collection and the Bach fugues would always correspond to those of
human listeners. While the general correspondence between listener judgments and expert
judgments with regard to key has been established (Cuddy, 1997), they might not necessarily
coincide in every case. This concern will be addressed in the next section, where we compare
the model’s judgments with experimental perception data.

5. Testing the model on expectation and error detection

As well as modeling the analytical process of key finding, it was suggested earlier that
a probabilistic model of melody could shed interesting light on surface processes of note
identification and interpretation. In key finding, the model found the structure maximizing
P(surface, structure); using Equation 3, we took this to indicate the most probable structure
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given the surface. Now, we use the same quantity, but summed over all possible structures,
indicating the probability of the surface itself—that is, the probability of a pitch sequence. I
will argue here that the probability of a pitch sequence, defined in this way, is a concept with
explanatory relevance to a variety of musical phenomena.

One very important aspect of melody perception is expectation. It is well known that in
listening to a melody, listeners form expectations as to what note is coming next; the creation,
fulfillment, and denial of such expectations has long been thought to be an important part
of musical affect and meaning (Meyer, 1956; Narmour, 1990). Melodic expectation has been
the subject of a large amount of psychological research. As noted at the outset of this study,
expectation could well be considered a fundamentally probabilistic phenomenon: A judgment
of the “expectedness” of a note could be seen as an estimate of its probability of occurring in
that context. While this point has been observed before—for example, Schellenberg, Adachi,
Purdy, and McKinnon (2002) define expectation as “anticipation of an event based on its
probability of occurring” (p. 511)—no attempt has yet been made to model melodic expectation
in probabilistic terms. With regard to experimental research, most studies have used one of two
paradigms: a perception paradigm, in which subjects are played musical contexts followed by
a continuation tone and are asked to judge the expectedness of the tone (Cuddy & Lunney,
1995; Krumhansl, Louhivuori, Toiviainen, Järvinen, & Eerola, 1999; Schellenberg, 1996;
Schmuckler, 1989); and a production paradigm, in which listeners are given a context and
asked to produce the tone (or series of tones) that they consider most likely to follow (Carlsen,
1981; Lake, 1987; Larson, 2004; Povel, 1996; Thompson, Cuddy, & Plaus, 1997; Unyk &
Carlsen, 1987). For our purposes, perception data seem most valuable, since they indicate
the relative expectedness of different possible continuations, whereas production data only
indicate continuations that subjects judged as most expected. Of particular interest are data
from a study by Cuddy and Lunney (1995). In this study, subjects were played a context of two
notes played in sequence (the implicative interval), followed by a third note (the continuation
tone) and were asked to judge the third note given the first two on a scale of 1 (extremely
bad continuation) to 7 (extremely good continuation). Eight different contexts were used:
ascending and descending major second, ascending and descending minor third, ascending
and descending major sixth, and ascending and descending minor seventh (see Fig. 8). Each
two-note context was followed by 25 different continuation tones, representing all tones within
an octave above or below the second tone of the context (which was always either C4 or F#4).
For each condition (context plus continuation tone), Cuddy and Lunney reported the average
rating, thus yielding 200 data points in all. These data will be considered further below.

Fig. 8. Two-note contexts used in Cuddy and Lunney (1995). (A) Ascending major second, (B) descending major
second, (C) ascending minor third, (D) descending minor third, (E) ascending major sixth, (F) descending major
sixth, (G) ascending minor seventh, (H) descending minor seventh. The continuation tone could be any tone within
one octave above or below the second context tone.
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A number of models of expectation have been proposed and tested on experimental
perception data (Cuddy & Lunney, 1995; Krumhansl et al., 1999; Schellenberg, 1996, 1997;
Schmuckler, 1989). The usual technique is to use multiple regression. Given a context, each
possible continuation is assigned a score that is a linear combination of several variables;
multiple regression is used to fit these variables to experimental judgments in the optimal
way. Schmuckler (1989) played excerpts from a Schumann song followed by various possible
continuations (playing melody and accompaniment separately and then both together);
regarding the melody, subjects’ judgments correlated with Krumhansl and Kessler’s (1982)
key profiles and with principles of melodic shape proposed by Meyer (1973). Other work has
built on the Implication-Realization theory of Narmour (1990), which predicts expectations
as a function of the shape of a melody. Narmour’s theory was quantified by Krumhansl
(1995) and Schellenberg (1996) to include five factors: registral direction, intervallic
difference, registral return, proximity, and closure (these factors will not be explained in
detail here). Schellenberg (1996) applied this model to experimental data in which listeners
judged possible continuations of excerpts from folk melodies. Cuddy and Lunney (1995)
modeled their expectation data (described above) with these five factors; they also included
predictors for pitch height, tonal strength (the degree to which the pattern strongly implied
a key—quantified using Krumhansl & Kessler’s key profile values), and tonal region (the
ability of the final tone to serve as a tonic, given the two context tones). On Cuddy and
Lunney’s experimental data, this model achieved a correlation of .80. Schellenberg (1997)
found that a simpler version of Narmour’s theory achieved equal or better fit to expectation
data than the earlier five-factor version. Schellenberg’s simpler model consists of only two
factors relating to melodic shape—a “proximity” factor, in which pitches close to previous
pitches are more likely, and a “reversal” factor, which favors a change of direction after large
intervals—as well as the predictors of pitch height, tonal strength, and tonal region used
by Cuddy and Lunney. Using this simplified model, Schellenberg reanalyzed Cuddy and
Lunney’s data and found a correlation of .851. Whether the five-factor version of Narmour’s
model or the simplified two-factor version provides a better fit to experimental data has been
a matter of some debate (Krumhansl et al., 1999; Schellenberg et al., 2002).

To test the current model against Cuddy and Lunney’s (1995) data, we must reinterpret that
data in probabilistic terms. There are various ways that this might be done. One could interpret
subjects’ ratings as probabilities (or proportional to probabilities) of different continuations
given a previous context; one could also interpret the ratings as logarithms of probabilities
or as some other function of probabilities. There seems little a priori basis for deciding this
issue. Initially, ratings were treated as directly proportional to probabilities, but this yielded
poor results; treating the ratings as logarithms of probabilities gave much better results, and
we adopt that approach in what follows. Specifically, each rating is taken to indicate the log
probability of the continuation tone given the previous two-note context. Under the current
model, the probability of a pitch pn given a previous context (po . . . pn−1) can be expressed as

P (pn | po . . . pn−1) = P (po . . . pn)/P (po . . . pn−1) (11)

where P (po . . . pn) is the overall probability of the context plus the continuation tone, and
P (po . . . pn−1) is the probability of just the context. An expression indicating the probability
of a sequence of tones was given in Equation 9; this can be used here to calculate both
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P (po . . . pn−1) and P (po . . . pn). For example, given a context of (Bb4, C4) and a continuation
tone of D4, the model’s expectation judgment would be log[P(Bb4, C4, D4)/P(Bb4, C4)] =
−1.973.

The model was run on the 200 test items in Cuddy and Lunney’s data, and its outputs
were compared with the experimental ratings for each item.12 Using the optimized parameters
gathered from the Essen corpus, the model yielded the correlation r = 0.744. It seemed
reasonable, however, to adjust the parameters to achieve a better fit to the data. This is
analogous to what is done in a multiple regression—as used by Cuddy and Lunney (1995),
Schellenberg (1997), and others—in which the weight of each predictor is set to optimally
fit the data. It was apparent from the experimental data, also, that many highly rated patterns
were ones in which the final tone could be interpreted as the tonic of the key. (This trend was
also noted by Cuddy & Lunney and Schellenberg, who introduced a special tonal region factor
to account for it.) This factor was incorporated into the current model by using special key
profiles for the continuation tone, in which the value for the tonic pitch is much higher than
usual. This parameter was added to the original five parameters, and all six parameters were
then fit to Cuddy and Lunney’s data using the same optimization method described in section
3 (see Table 1).13 With these adjustments, the model achieved a score of r = .883, better than
both Cuddy and Lunney’s model (.80) and Schellenberg’s (.851). Figure 9 shows Cuddy and
Lunney’s data along with the model’s output, using the optimized parameters, for two of their
eight context intervals (ascending major second and descending major sixth).

One interesting emergent feature of the current model is its handling of “post-skip reversal”
or “gap fill.” It is a well-established musical principle that large leaps in melodies tend to be
followed by a change of direction. Some models incorporate post-skip reversal as an explicit
preference: it is reflected, for example, in the registral direction factor of Narmour’s model
and in the reversal factor of Schellenberg’s two-factor model. However, von Hippel and Huron
(2000) have suggested that post-skip reversal might simply be an artifact of “regression to the
mean.” A large interval is likely to take a melody close to the edge of its range; the preference
to stay close to the center of the range will thus exert pressure for a change of direction.
The current model follows this approach. While there is no explicit preference for post-skip
reversal, a context consisting of a large descending interval like A4–C4 is generated with
highest probability by a range centered somewhat above the second pitch; given such a range,
the pitch following C4 is most likely to move closer to the center, thus causing a change in
direction. The preference for ascending intervals following a descending major sixth, though
slight, can be seen in Fig. 9 in Cuddy and Lunney’s data as well as in the model’s predictions.
(Values for ascending—positive—intervals are somewhat higher than for descending ones.)
It appears that such an indirect treatment of post-skip reversal as an artifact of range and
proximity constraints can model expectation data quite successfully.

The influence of key on the model’s behavior is also interesting to consider. For example,
given the ascending-major-second context (Fig. 9), compare the model’s judgments (and the
experimental data) for continuations of a descending major second (−2) and descending minor
second (−1). Proximity would favor −1, and range would seem to express little preference. So
why does the model reflect a much higher value for −2? The reason surely lies in the influence
of key. Note that the model does not make a single, determinate key judgment here, nor should
it. A context such as Bb4–C4 is quite ambiguous with regard to key; it might imply Bb major,
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Fig. 9. Expectation data from Cuddy and Lunney (1995) and the model’s predictions. Data are shown for two
two-tone contexts, ascending major second (Bb3–C4) and descending major sixth (A4–C4). The horizontal axis
indicates continuation tones in relation to the second context tone. The vertical axis represents mean judgments
of expectedness for the continuation tone given the context, from Cuddy and Lunney’s experimental data and as
predicted by the model. (The model’s output here has been put through a linear function which does not affect the
correlation results, but allows easier comparison with the experimental data.)

Bb minor, Eb major, G minor, or other keys. In each of these cases, however, a continuation of
−2 (moving back to Bb4) remains within the scale of the key, whereas a continuation of −1
(moving to B4) does not. Thus, key plays an important role in the model’s expectation behavior,
even when the actual key is in fact quite ambiguous. The fact that the experimental data also
reflects a higher rating for −2 than for −1 suggests that this is the case perceptually as well.

We can further understand the model’s expectation behavior by examining its handling of
scale degree tendencies. It is well known that certain degrees of the scale have tendencies to
move to other degrees (Aldwell & Schachter, 2003); such tendencies have been shown to play
an important role in melodic expectation (Huron, 2006; Larson, 2004; Lerdahl, 2001). We
can represent the tendency of a degree SD1 in terms of the degree SD2 that is most likely to
follow (we call this the “primary follower” of SD1) along with its probability of following (the
“tendency” value of SD1). (We do not allow a degree to be its own primary follower; tones
often do repeat, but this is not usually considered a case of melodic “motion.”) To model this,
we use a version of the model with a very high range variance, thus minimizing the effect of the
range profile; this seems appropriate, since the inherent tendency of a scale degree presumably
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Fig. 10. Scale-degree tendencies as predicted by the model. Arrows indicate, for each scale degree, the “primary
follower”—the scale degree that is most likely to follow; the number on the arrow indicates the “tendency value”—
the primary follower’s probability of following.

depends only on the scale degree itself and should not be affected by any larger context. In
effect, then, scale degree tendencies are determined by pitch proximity and by the overall
probability of each degree in the scale (as represented in the key profiles). Melodies were
created consisting of a one-octave C major scale repeated three times, to establish a strong
key context, followed by all possible pairs of pitches (SD1, SD2) within the octave 60–72,
representing all pairs of scale degrees. For each SD1, the tendency value was defined as the
maximal value of P(SD2 | SD1), and the primary follower was defined as the SD2 yielding this
maximal value. Figure 10 shows the primary follower and tendency value for each scale degree.

For the most part, the results in Fig. 10 accord well with the usual assumptions of music
theory. For degrees outside the scale (#1, b3, #4, b6, and b7), the primary follower is an adjacent
degree of the major scale: #1 resolves to 1, #4 resolves to 5, and so on. (The exception is
b7, whose primary follower is 1.) These chromatic degrees also have relatively high tendency
values, above the average of .245, reflecting the strong expectation for these tones to resolve
in a specific way. Turning to the scalar degrees (the degrees of the major scale), it can be
seen that they tend toward adjacent scalar degrees, except for 5 (which tends toward 3) and
3 (which tends toward 5). We find relatively high tendency values for 4 (.259) and 7 (.282);
both of these degrees are strongly inclined to resolve to a particular scale tone (they are
sometimes called tendency tones), no doubt due to the fact that each one is a half step from
a note of the tonic triad. The lowest tendency values are for 1, 3, and 5, the three degrees
of the tonic triad. Roughly speaking, the tendency values are the inverse of the key profile
values, with tonic-triad degrees having the lowest values, other scalar degrees having higher
values, and chromatic degrees having the highest values. One reason that degrees with lower
probability have higher tendency values is that the probability of staying on the same note
for such degrees is much smaller, leaving more probability mass for motion to other degrees.
(Put simply: one reason why a chromatic note seems to want to move is the simple fact that
it is unlikely to stay in the same place.) On the whole, then, the conventional tendencies of
scale degrees can be predicted quite well, simply as a function of pitch proximity and the
overall probability of different degrees. It would be interesting to compare these predictions
with empirical measures of scale-degree tendency, but this will not be undertaken here.14

Another kind of phenomenon that is illuminated by the current model could be broadly
described as note error detection. It seems uncontroversial that most human listeners have
some ability to detect errors—“wrong notes”—even in an unfamiliar melody. This ability has
been shown in studies of music performance; in sight-reading an unfamiliar score, performers
often unconsciously correct anomalous notes (Sloboda, 1976). The ability to detect errors
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presumably depends on knowledge of the probabilities of different notes occurring; and it
seems plausible that the principles of melodic construction discussed above—principles of
key, range, and pitch proximity—are brought to bear in this process.

The model’s ability to detect errors was tested using the 65-song Essen folksong sample
described above. The model was given the original Essen melodies as well as randomly dis-
torted versions of the same melodies, produced by randomly choosing one note and replacing
it by a random pitch chosen from a uniform distribution over the range of the melody (between
the lowest and highest pitch). The question was whether the model could reliably assign a
higher probability to the correct versions as opposed to the distorted versions.15 Each of the 65
melodies in the sample was randomly distorted; to ensure a statistically reliable sample, the
process was repeated 10 times, yielding a total of 650 trials. In each trial, the model’s analyses
for the correct version and the distorted version were compared simply with regard to the total
probability given to the melody (as defined in Equation 9) to see which version was assigned
higher probability. In effect, then, the model simply judged which of a pair of melodies was
more likely to contain an error, without expressing any opinion as to exactly where the error
was. (In this test, the parameter values optimized on the Essen corpus were used.) The model
assigned the correct version of the melody higher probability than the distorted version in 596
out of 650 trials (91.7%). This level of performance seems promising. Probably, not all random
errors of this type would be identifiable as errors even by humans; whether the model’s ability
is comparable to that of human listeners remains to be tested.

A final aspect of melody perception deserving mention here is the actual identification
of notes. The extraction of note information from an auditory signal, sometimes known as
music recognition or transcription, is a complex process, involving the grouping of partials
(individual frequencies) into complex tones and correct categorization of these complex tones
into pitch categories. A number of models of this process have been proposed, both for mono-
phonic input and for the much more difficult problem of polyphonic input (Bello, Monti,
& Sandler, 2000; Godsmark & Brown, 1999; Kashino et al., 1998; Martin, 1996; Raphael,
2002b). It seems likely that a model such as the one proposed above could contribute to this
task by evaluating the probability of different note patterns. While several Bayesian models of
transcription have been proposed (notably Kashino et al., 1998, and Raphael, 2002b), the pos-
sibility of incorporating top-down musical knowledge into transcription in a Bayesian fashion
remains largely unexplored. To take one example, a frequent problem with current transcrip-
tion models is that a note is often mistaken for another note an octave away (due to the similar
frequency content of octave-related notes; Bello et al., 2000; Martin, 1996). Incorporating
a pitch proximity factor—assigning lower probability to melodies with large leaps—should
greatly alleviate this problem. There seems little doubt that such top-down knowledge could
be useful in solving the engineering problem of note identification; whether it is actually used
in human note-identification is an interesting question that has not yet been addressed.

6. Further issues

In this study I have proposed a model of melody perception. The model essentially incor-
porates just three kinds of knowledge: (a) given a key, some pitch classes are more likely than
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others; (b) melodies tend to remain within a fairly narrow range; and (c) intervals between
adjacent pitches tend to be small. Given this knowledge, the model is able to perform well
at key detection, melodic expectation, and error detection. With regard to key finding, the
model’s performance is substantially better than the Longuet-Higgins/Steedman model and
the Krumhansl-Schmuckler model on European folk songs; on Bach fugue themes, it out-
performs the Krumhansl-Schmuckler model but not the Longuet-Higgins/Steedman model.
With regard to expectation, the model performs better than both Cuddy and Lunney’s (1995)
model and Schellenberg’s (1997) model on Cuddy and Lunney’s expectation data. On balance,
then—where comparison is possible—the model it at least competitive with other models in
its level of performance. Beyond the issue of performance, however, I will argue here that the
current model has several important advantages over others that have been proposed.

One of the important features of the model is that it is able to perform both the structural
task of key identification and the surface-level tasks of expectation and error detection within
a single framework. This sets it apart from prior models of both key finding and expectation,
which have addressed these problems separately. It is true that the connection between key
finding and expectation is indirectly reflected in some other work—notably in the fact that
Krumhansl and Kessler’s (1982) key profiles have been incorporated into both expectation
models (Cuddy & Lunney, 1995; Schellenberg, 1997) and key-finding models (Krumhansl,
1990). But the connection between key finding and expectation is brought out much more
clearly in the current model. Key finding is a matter of finding the key with which the note
pattern achieves the highest joint probability; expectation is a matter of judging the probability
of the note pattern itself (or the relative probability of different possible note patterns), which is
the joint probability of the note pattern with all possible keys. This points to another advantage
of the model: Because it offers a way of calculating the overall probability of a note pattern,
it provides a method for performing error detection (and could also, potentially, contribute
to the note-identification task). By contrast, regression-based models of expectation do not
appear to offer any natural way of modeling error detection or pitch identification, because
they provide no measure of the overall probability of a melody.

Undoubtedly, the model could be improved in many ways. This is clear when we examine
its generative outputs—consider, for example, Fig. 2b, a melody generated by the model.
While this melody seems much more acceptable than the one in Fig. 2a, it still does not seem
very much like a real melody—even with regard to the pitch domain (the rhythmic domain
is of course completely neglected). Other kinds of musical knowledge would have to be
incorporated into the model to attain this goal. Melodies normally have some kind of implied
harmonic structure—the notes outline a series of harmonies, forming a coherent progression
and ending in a conventional closing formula or cadence; they generally also reflect some
use of repeated patterns or motives. The model knows nothing of these aspects of music. It
is unclear to what extent these considerations are involved in perceptual processes such as
expectation and error detection, but there is some evidence that they are; Schmuckler (1989)
found that listeners’ musical expectancies were, indeed, affected by harmonic principles.
There may also be more general “shape” considerations that could improve the model. One
example is the tendency for melodies to follow small intervals with another small interval in the
same direction—a phenomenon that has sometimes been called process (Narmour, 1990) or
inertia (Larson, 2004). This factor is clearly evident in Cuddy and Lunney’s data: for example,
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given a context of an ascending major second Bb4–C4 (see Fig. 9), the highest ratings are for
continuation intervals of +1, +2, or +3, creating another small interval in the same direction.
This tendency is not predicted by the current model or by Schellenberg’s two-factor model;
it is predicted by the registral direction factor of Cuddy and Lunney’s model, but this model
performed less well than the current model or Schellenberg’s model overall. Clearly, there is
further work to be done in combining the strengths of these various models.

An obvious further issue that arises is the extension of the model to polyphonic music—
music in which more than one note at a time is present. This raises several significant chal-
lenges. First, I have argued elsewhere (Temperley, 2004) that the method of key finding used
here may not be appropriate for polyphonic music. In polyphonic music, treating each note
as an independent event generated from a key profile gives too much weight to pitch classes
that are repeated or doubled in different octaves; a better approach is to treat each pitch class
as absent or present within a short segment of music.16 Surface-level tasks such as error
detection or expectation would also be more complex in polyphonic music. In general, poly-
phonic music is constructed of several simultaneous melodic lines or streams; thus, tasks such
as detecting errors or generating expectations would first require that the notes be grouped
into lines in the correct way. This problem of voice separation or contrapuntal analysis is
a challenging problem in itself (Bregman, 1990; Temperley, 2001)—one that, incidentally,
might well be susceptible to a Bayesian approach. In short, probabilistic modeling of music
cognition becomes much more difficult in the case of polyphonic music, for a variety of
reasons. Nevertheless, many of the problems that arise—such as polyphonic key finding and
voice separation—seem amenable to probabilistic solutions.

As noted earlier, key is only one aspect of the musical structures that are inferred by
listeners. Other domains of music perception have also proven to be amenable to a probabilistic
approach, such as meter (Cemgil et al., 2003, 2000), phrase structure (Bod, 2002), and harmony
(Raphael & Stoddard, 2004). (Probabilistic work on transcription was discussed in the previous
section.) These aspects of music perception interact in complex ways with the issues of key
and melodic pitch structure. One example concerns the perception of phrases. It seems clear
that key plays a role in phrase perception, in that pitches that are more stable or compatible
with the key are especially likely to occur at the ends of phrases (Temperley, 2001). On the
other hand, rhythmic factors are also important cues to phrase structure—for example, we tend
to infer phrase boundaries after long notes (Lerdahl & Jackendoff, 1983); thus, the current
model on its own could not hope to detect phrase boundaries with much accuracy. An effective
phrase perception model would need to take account of both pitch and rhythmic factors.17

Another example concerns melodic expectation. While we have focused on the pitch aspect
of melodic expectation, it has a rhythmic aspect as well: We form expectations not just about
what note will occur but when it will occur (Jones, Moynihan, MacKenzie, & Puente, 2002).
Probabilistic models of meter perception, such as that of Cemgil et al. (2003, 2000), can be
used to calculate the probability of rhythmic patterns and could thus be used to model rhythmic
expectation. Combining pitch and rhythm to create a complete probabilistic model of melodic
expectation would seem to be an interesting possibility for the future.

In assigning a probability to any melodic input, the model described here is analogous to a
language model as used in speech recognition, which assigns a probability to a sequence of
words (Jurafsky & Martin, 2000). A language model can also be construed as a characterization
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of actual language use—a probabilistic description of a language. Similarly, the current model
might be described as a musical style model that characterizes a certain musical idiom with
regard to principles of melodic construction. Roughly speaking, this idiom is Western tonal
music, encompassing European folk music, pre-20th-century art music (classical music), and
arguably much popular music as well.18 A musical style model is successful to the extent
that it assigns high probability to music within the style. (This could also be phrased in terms
of the idea of cross-entropy. By having the current model assign probabilities to melodies in
the Essen corpus, we are essentially measuring the cross-entropy between the model and the
corpus; a better model yields lower cross-entropy.) To the extent that principles of key, range,
and pitch proximity allow us to assign higher probability to a corpus of music, this provides a
kind of empirical validation of these principles as claims about the music itself—and possibly
about the cognitive compositional processes involved in its creation. This also raises the
possibility that probabilistic musical models could be used comparatively, to characterize the
differences and commonalities between musical styles. In this way, the probabilistic approach
might allow for the formulation and testing of empirical claims about music, with more rigor
and quantitative precision than has been possible before.

Notes

1. While the study primarily uses European folk melodies for training and testing, the
basic musical principles involved are also shared with many other kinds of music—
classical music, hymns, Christmas carols, nursery songs, and so on—with which most
Western listeners are familiar. I return to the issue of style at the end of the article.

2. In earlier work (Temperley, 2002, 2004), I proposed a model of key detection in
polyphonic music; Raphael and Stoddard’s (2004) model also performs key detection
as part of a harmonic analysis model. However, these models adopt a different approach
to what is undertaken here; I return to this issue in section 6.

3. The Essen corpus is available at http://kern.ccarh.org/cgi-bin/ksbrowse?l=/essen/. The
“europa” portion of this corpus is what was used in the current study.

4. The two melodies in Fig. 2 may be heard at http://www.theory.esm.rochester.edu/
temperley/fig2a.mid and http://www.theory.esm.rochester.edu/temperley/fig2b.mid.

5. von Hippel (2000) showed that the prevalence of small intervals in melodies was not
just an artifact of range constraints, by showing that scrambled versions of melodies—
in which the notes were randomly reordered—had larger intervals than the original
versions.

6. The model could be regarded as a Gauss-Markov model with regard to the dependency
of each pitch on the previous pitch, though the dependency on the central pitch and key
makes it somewhat different.

7. The key profile values could also be considered as parameters. However, to optimize
these using a MLE approach—as I propose below—would be very problematic. The
model has no way of figuring out the arbitrary association between keys and key profiles.
Still, the model might be able to correctly sort the melodies into key categories, even
if it did not associate them with keys in the correct way. This would be an interesting
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experiment but will not be undertaken here. Another reason for not including the key-
profile parameters in the optimization process is that it allows for fairer comparison
with melodic expectation models, as discussed in section 5.

An earlier version of this model was presented in Temperley (2007). That version
did not use systematic optimization techniques for setting the parameters; thus the
parameter values and the test results (on the expectation and error-detection tests
described below) are slightly different.

8. This optimization method appears not to have a name; it is described in Press, Teukolsky,
Vetterling, and Flannery (1992, p. 413) as a simplified version of Powell’s method.

9. Recall that the RPK profile values are calculated as the product of proximity profile,
range profile, and key profile values, and only the key profile values depend on the
key. Thus, one might wonder if key probabilities could be determined from the key
profile values alone (everything else being constant across keys): that is, P(kx | pitch
sequence) ∝ P(kx) !Kn, where Kn are the key profile values for all pitches in the
melody. The problem is that the RPK values are not simply the product of the three
profiles but are normalized to sum to 1; this was found to have a small effect on the
model’s key-finding behavior in some cases.

10. The sample was created by Paul von Hippel and was stratified to include songs from
all ethnic categories represented in the Essen corpus.

11. The models of Vos and Van Geenen (1996) and Temperley (2001) are capable of identi-
fying changes of key; for these models, the figures indicate the number of cases in which
the models identified the correct initial key of the subject. The results for Longuet-
Higgins and Steedman (1971) and for Vos and Van Geenen (1996) are as reported in
their publications. Regarding the Krumhansl-Schmuckler model, the test reported here
was done by me (using my own implementation) and simply involved giving each entire
fugue subject to the model. Krumhansl (1990) also tested the Krumhansl-Schmuckler
model on the Bach fugue subjects in a different way: in her test, the model was run on
successively longer portions of the fugue subjects (first one note, then two notes, then
three notes, etc.) until it got the right answer and then stopped. My testing method is
of more relevance here, since it is the way other key-finding models have been tested
and thus allows comparison.

12. Two groups of subjects were used in the experiment, a musically trained group and
an untrained group. The test reported here averages the ratings for the two groups, as
was apparently done by both Cuddy and Lunney (1995) and Schellenberg (1997). In
the experimental stimuli, the second tone was always either C4 or F#4, but Cuddy and
Lunney do not make clear which trials had C4 and which ones had F#4; in the current
test, the second note was set to C4 in all cases.

13. I did not optimize the key profile values but simply used the values drawn from the
Essen corpus (shown in Fig. 4). This allows fairer comparison with Cuddy and Lunney
(1995) and Schellenberg (1997), since they did not include key profile values as factors
in their multiple regressions.

14. Huron (2006, pp. 158–163) provides empirical data regarding scale-degree tendencies
in the Essen corpus. However, his analysis focuses on the joint probability of two scale
degrees occurring successively, rather than on the conditional probability of one scale
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degree given another. Huron’s analysis also distinguishes between different spellings
of the same pitch class (e.g., #1 versus b2), which the current analysis does not.

15. In choosing a pitch for the distorted note, the correct pitch was excluded, thus ensuring
that the distorted note was always different from the original note.

16. Elsewhere (Temperley, 2002, 2004) I have proposed a model of polyphonic key finding
based on this idea; however, this model has no way of assessing the probability of a
surface note pattern. Raphael and Stoddard’s (2004) model of harmonic analysis is
similar: It generates a segment of a piece simply as a “bag” of pitch class tokens,
without specifying the exact register or time order of notes.

17. Bod’s (2002) phrase structure model does in fact take rhythm and pitch into account.
But this is done in a very data-driven way: Using a Monte Carlo approach, the model
counts up all kinds of patterns of pitch and rhythm that are associated with phrase
structure, such as the number of phrases that end with a half note of scale degree 1. It
is possible that phrase perception could be modeled quite effectively using just a few
carefully chosen pitch and rhythm parameters, similar to the approach that is taken
here.

18. While we have been concerned with European folk music here, I believe that the model
would, to a large extent, be applicable to other Western musical styles as well. Principles
of range and proximity seem to be operative in a wide range of different styles (von
Hippel & Huron, 2000). With regard to the key profiles, some modifications might be
required, depending on the style. As discussed earlier, classical music seems to reflect
the harmonic minor scale as the primary scale of minor keys—in which 7 is part of the
scale and b7 is not—rather than the natural minor (see the profiles in Temperley, 2004,
gathered from a corpus of classical music). Some popular genres also use different
scalar collections, such as pentatonic or blues-based scales.
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