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Abstract
We present a corpus of harmonic analyses and melodic tran-
scriptions of rock songs. After explaining the creation and
notation of the corpus, we present results of some explorations
of the corpus data. We begin by considering the overall dis-
tribution of scale-degrees in rock. We then address the issue
of key-finding: how the key of a rock song can be identified
from harmonic and melodic information. Considering both
the distribution of melodic scale-degrees and the distribution
of chords (roots), as well as the metrical placement of chords,
leads to good key-finding performance. Finally, we discuss
how songs within the corpus might be categorized with regard
to their pitch organization. Statistical categorization methods
point to a clustering of songs that resembles the major/minor
distinction in common-practice music, though with some im-
portant differences.

1. Introduction
In recent years, corpus methods have assumed an increasingly
important role in musical scholarship. Corpus research—that
is, the statistical analysis of large bodies of naturally-occurring
musical data—provides a basis for the quantitative evalu-
ation of claims about musical structure, and may also re-
veal hitherto unsuspected patterns and regularities. In some
cases, the information needed for a corpus analysis can be ex-
tracted in a relatively objective way; examples of this include
melodic intervals and rhythmic durations in notated music
(von Hippel & Huron, 2000; Patel & Daniele, 2003). In other
cases, a certain degree of interpretation and subjectivity is
involved. Harmonic structure (chords and keys) is a case of
the latter kind; for example, expert musicians may not always
agree on whether something is a true ‘harmony’ or merely an
ornamental event. In non-notated music, even the pitches and
rhythms of a melody can be open to interpretation. The use
of multiple human annotators can be advantageous in these
situations, so that the idiosyncrasies of any one individual do
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not overly affect the results; the level of agreement between
annotators can also be measured, giving some indication of
the amount of subjectivity involved.

The focus of the current study is on rock music. While rock
has been the subject of considerable theoretical discussion
(Moore, 2001; Stephenson, 2002; Everett, 2009), there is little
consensus on even the most basic issues, such as the normative
harmonic progressions of the style, the role of modes and
other scale structures, and the distinction between major and
minor keys. We believe that statistical analysis can inform the
discussion of these issues in useful ways, and can therefore
contribute to the development of a more solid theoretical foun-
dation for rock. As with any kind of music, the understanding
and interpretation of specific rock songs requires knowledge
of the norms and conventions of the style; corpus research can
help us to gain a better understanding of these norms.

The manual annotation of harmonic and other musical in-
formation also serves another important purpose: to provide
training data for automatic music processing systems. Such
systems have recently been developed for a variety of practi-
cal tasks, such as query-matching (Dannenberg et al., 2007),
stylistic classification (Aucouturier & Pachet, 2003), and the
labelling of emotional content (van de Laar, 2006). Such mod-
els usually employ statistical approaches, and therefore re-
quire (or at least could benefit from) statistical knowledge
about the relevant musical idiom. For example, an automated
harmonic analysis system (whether designed for symbolic or
audio input) may require knowledge about the prior prob-
abilities of harmonic patterns and the likelihood of pitches
given harmonies. Manually-annotated data provides a way of
setting these parameters. Machine-learning methods such as
expectation maximization may also be used, but even these
methods typically require a hand-annotated ‘ground truth’
dataset to use as a starting point.

In this paper we present a corpus of harmonic analyses
and melodic transcriptions of 200 rock songs. (An earlier
version of the harmonic portion of the corpus was presented in
de Clercq and Temperley (2011).) The entire corpus is
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publicly available at www.theory.esm.rochester.edu/rock_
corpus. We discuss our procedure for creating the corpus and
explain its format. We then present results of some explo-
rations of the corpus data. We begin by considering the overall
distribution of scale-degrees in rock, comparing this to the
distribution found in common-practice music. We then discuss
the issue of key-finding: how the key of a rock song can be
identified from harmonic and melodic information. Finally,
we discuss how songs within the corpus might be categorized
with regard to their pitch organization; an important question
here is the validity of the ‘major/minor’ dichotomy in rock.

Several other corpora of popular music have been compiled
by other researchers, although each of these datasets differs
from our own in important ways. The Million-Song Dataset
(Bertin-Mahieux, Ellis, Whitman, & Lamere, 2011) stands as
probably the largest corpus of popular music in existence,
but only audio features—not symbolic harmonic and pitch
information—are encoded. Datasets more similar to ours have
been created by two groups: (1) The Center for Digital Music
(CDM) at the University of London (Mauch et al., 2009),
which has created corpora of songs by the Beatles, Queen, and
Carole King; and (2) The McGill University Billboard Project
(Burgoyne, Wild, & Fujinaga, 2011), which has compiled a
corpus of songs selected from the Billboard charts spanning
1958 through 1991. Both of these projects provide manually-
encoded annotations of rock songs, although the data in these
corpora is limited primarily to harmonic and timing informa-
tion. Like these corpora, our corpus contains harmonic and
timing information, but it represents melodic information as
well; to our knowledge, it is the first popular music corpus to
do so.

2. The corpus
2.1 The Rolling Stone 500 list

The songs in our corpus are taken from Rolling Stone maga-
zine’s list of the 500 Greatest Songs of All Time (2004). This
list was created from a poll of 172 ‘rock stars and leading au-
thorities’who were asked to select ‘songs from the rock’n’roll
era’. The top 20 songs from the list are shown in Table 1.
As we have discussed elsewhere (de Clercq & Temperley,
2011), ‘rock’ is an imprecise term, sometimes used in quite a
specific sense and sometimes more broadly; the Rolling Stone
list reflects a fairly broad construal of rock, as it includes a
wide range of late twentieth-century popular styles such as
late 1950s rock’n’roll, Motown, soul, 1970s punk, and 1990s
alternative rock. Whether the songs on the list are actually the
greatest rock songs is not important for our purposes (and
in any case is a matter of opinion). The list is somewhat
biased towards the early decades of rock; 206 of the songs are
from the 1960s alone. To give our corpus more chronological
balance, we included the 20 highest-ranked songs on the list
from each decade from the 1950s through the 1990s (the list
only contains four songs from 2000 or later, which we did
not include). One song, Public Enemy’s ‘Bring the Noise’,

was excluded because it was judged to contain no harmony
or melody, leaving 99 songs. We then added the 101 highest-
ranked songs on the list that were not in this 99-song set,
creating a set of 200 songs. It was not possible to balance the
larger set chronologically, as the entire 500-song list contains
only 22 songs from the 1990s.

2.2 The harmonic analyses

At the most basic level, our harmonic analyses consist of
Roman numerals with barlines; Figure 1(a) shows a sample
analysis of the chorus of the Ronettes’‘Be My Baby’. (Vertical
bars indicate barlines; a bar containing no symbols is assumed
to continue the previous chord.) Most songs contain a large
amount of repetition, so we devised a notational system that
allows repeated patterns and sections to be represented in an
efficient manner. A complete harmonic analysis using our no-
tational system is shown in Figure 1(b). The analysis consists
of a series of definitions, similar to the ‘rewrite rules’ used in
theoretical syntax, in which a symbol on the left is defined as
(i.e. expands to) a series of other symbols on the right. The
system is recursive: a symbol that is defined in one expres-
sion can be used in the definition of a higher-level symbol.
The right-hand side of an expression is some combination
of non-terminal symbols (preceded by $), which are defined
elsewhere, and terminal symbols, which are actual chords.
(An ‘R’ indicates a segment with no harmony.) For example,
the symbol VP (standing for ‘verse progression’) is defined
as a four-measure chord progression; VP then appears in the
definition of the higher-level unit Vr (standing for ‘verse’),
which in turn appears in the definition of S (‘song’). The ‘top-
level’ symbol of a song is always S; expanding the definition
of S recursively leads to a complete chord progression for the
song.

The notation of harmonies follows common conventions.
All chords are built on degrees of the major scale unless
indicated by a preceding b or #; upper-case Roman numerals
indicate major triads and lower-case Roman numerals indicate
minor triads. Arabic numbers are used to indicate inversions
and extensions (e.g. 6 represents first-inversion and 7 rep-
resents an added seventh), and slashes are used to indicate
applied chords, e.g. V/ii means V of ii. The symbol ‘[E]’ in
Figure 1(b) indicates the key. Key symbols indicate only a
tonal centre, without any distinction between major and minor
keys (we return to this issue below). Key symbols may also
be inserted in the middle of an analysis, indicating a change of
key. The time signature may also be indicated (e.g. ‘[3/4]’); if it
is not, 4/4 is assumed. See de Clercq and Temperley (2011) for
a more complete description of the harmonic notation system.

Given a harmonic analysis in the format just described, a
custom-written computer program expands it into a ‘chord
list’, as shown in Figure 2. The first column indicates the
onset time of the chord in relation to the original recording;
the second column shows the time in relation to bars. (The
downbeat of the first bar is 0.0, the midpoint of that bar is 0.5,
the downbeat of the second bar is 1.0, and so on; we call this
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Statistical Analysis of Harmony and Melody in Rock Music 189

Table 1. The top 20 songs on the Rolling Stone list of the ‘500 Greatest Songs of All Time’.

Rank Title Artist Year

1 Like a Rolling Stone Bob Dylan 1965
2 Satisfaction The Rolling Stones 1965
3 Imagine John Lennon 1971
4 What’s Going On Marvin Gaye 1971
5 Respect Aretha Franklin 1967
6 Good Vibrations The Beach Boys 1966
7 Johnny B. Goode Chuck Berry 1958
8 Hey Jude The Beatles 1968
9 Smells Like Teen Spirit Nirvana 1991
10 What’d I Say Ray Charles 1959
11 My Generation The Who 1965
12 A Change Is Gonna Come Sam Cooke 1964
13 Yesterday The Beatles 1965
14 Blowin’ in the Wind Bob Dylan 1963
15 London Calling The Clash 1980
16 I Want to Hold Your Hand The Beatles 1963
17 Purple Haze The Jimi Hendrix Experience 1967
18 Maybellene Chuck Berry 1955
19 Hound Dog Elvis Presley 1956
20 Let It Be The Beatles 1970

Fig. 1. (a) A harmonic analysis of the chorus of the Ronettes’ ‘Be My
Baby’. (b) DT’s harmonic analysis of the Ronettes’ ‘Be My Baby’.

Fig. 2. Chord list for the first verse of ‘Be My Baby’, generated from
the analysis in Figure 1(b). (The first two bars have no harmony, thus
the first chord starts at time 2.0.)

‘metrical time’.) The third column is the harmonic symbol
exactly as shown in the analysis; the fourth column is the
chromatic relative root, that is, the root in relation to the key
(I=0, bII=1, II=2, and so on); the fifth column is the diatonic
relative root (I=1, bII=2, II=2, etc.); the sixth column shows
the key, in integer notation (C=0), and the final column shows
the absolute root (C=0).

Each of us (DT and TdC) did harmonic analyses of all
200 songs. We analysed them entirely by ear, not consulting

lead sheets or other sources. We resolved certain differences
between our analyses, such as barline placement and time
signatures. (In most cases, the meter of a rock song is made
clear by the drum pattern, given the convention that snare
hits occur on the second and fourth beats of the measure;
some cases are not so clear-cut, however, especially songs
in triple and compound meters.) When we found errors in
the harmonic analyses, we corrected them, but we did not
resolve differences that reflected genuine disagreements about
harmony or key.After correcting errors, the level of agreement
between our analyses was 93.3% (meaning that 93.3% of the
time, our analyses were in agreement on both the chromatic
relative root and the key). Inspection of the differences showed
that they arose for a variety of reasons. In some cases, we
assigned different roots to a chord, or disagreed as to whether
a segment was an independent harmony or contained within
another harmony; in other cases, we differed in our judgments
of key. (See de Clercq and Temperley (2011) for further dis-
cussion and examples.) While it would clearly be desirable to
have more than two analyses for each song, the high level of
agreement between our analyses suggests that the amount of
subjectivity involved is fairly limited.

2.3 The melodic transcriptions

Many interesting questions about rock require information
about melody as well as harmony. To investigate the melodic
aspects of rock, we first needed to devise a notational system
for transcribing rock melodies. Figure 3 shows TdC’s melodic
transcription for the first verse and chorus of ‘Be My Baby’
(music notation for the first four bars is shown in Figure 4,
Example A). Pitches are represented as scale-degrees in rela-
tion to the key: integers indicate degrees of the major scale,
while other degrees are indicated with # and b symbols (e.g.
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190 David Temperley and Trevor de Clercq

Fig. 3. TdC’s melodic transcription of the first verse and chorus of
the Ronettes’ ‘Be My Baby’. Figure 4(a) shows music notation for
the first four bars.

‘#1’). As with our harmonic notation system, vertical bars
indicate barlines; each bar is assumed to be evenly divided into
units, and a unit containing no pitch event is indicated with
a dot. (Only note onset times are indicated, not note offsets.)
Each scale-degree is assumed to be the closest representa-
tive of that scale-degree to the previous pitch: for example
‘15’ indicates a move from scale-degree 1 down to scale-
degree 5 rather than up, since a perfect fourth is smaller than
a perfect fifth. (Tritones are assumed to be ascending.) A leap
to a pitch an octave above or below the closest representa-
tive can be indicated with ‘∧’ or ‘∨’, respectively (e.g. ‘1∧5’
would be an ascending perfect fifth). Keys and time signatures
are indicated in the same way as in the harmonic analyses.
[OCT=4] indicates the octave of the first note, following the
usual convention of note names (for example, the note name of
middle C is C4, thus the octave is 4). From this initial registral
designation and the key symbol, the exact pitch of the first
note can be determined (given the opening [E] and [OCT=4]
symbols, scale-degree 1 is the note E4), and the exact pitch
of each subsequent note can be determined inductively (for
example, the second note in Figure 3 is the 1 in E major closest
to E4, or E4; the third note is D#4). Syllable boundaries are
not marked; a sequence of notes will be represented in the
same way whether it is under a single syllable (a melisma)
or several. ‘R∗4’ at the beginning indicates four bars of rest
before the vocal begins.

For the melodic transcriptions, we divided the 200-song set
described above into two halves: DT transcribed 100 of the
songs and TdC transcribed the other 100. Six of the songs were
judged to have no melody at all, because the vocal line was
predominantly spoken rather than sung; for these songs, no
melodic data was transcribed. (These include Jimi Hendrix’s
‘Foxey Lady’, the Sex Pistols’ ‘God Save the Queen’, and
several rap songs such as Grandmaster Flash and the Furious
Five’s ‘The Message’.) As with the harmonic analyses, we
did our melodic transcriptions by ear. We also converted the
transcriptions into MIDI files (combining them with MIDI
realizations of the harmonic analyses), which allowed us to
hear them and correct obvious mistakes. At the website we
provide a script for converting an analysis such as that in
Figure 3 into a ‘note list’ (similar to the chord list described
earlier), showing the absolute ontime, metrical ontime, pitch,
and scale-degree of each note.

For 25 songs in the corpus, both of us transcribed the melody
of one section of the song (generally the first verse and chorus),
so as to obtain an estimate of the level of agreement between

Table 2. F scores for DT’s and TdC’s melodic transcriptions with
different values of pitch slack (in semitones) and rhythmic slack (in
bars).

Pitch

Rhythm 0 1

0 0.893 0.920
1/16 0.906 0.933
1/8 0.953 0.976

us. In comparing these transcriptions (and in discussing our
transcriptions of other songs), we discovered a number of
significant differences of opinion. We agreed that we wanted
to capture the ‘main melody’ of the song, but it is not always
obvious what that is. Sometimes part of a song (especially the
chorus) features an alternation between two vocal parts that
seem relatively equal in prominence (usually a lead vocal and
a backup group); the chorus of ‘Be My Baby’ is an example
of this (see Figure 4, Example B). In other cases, a song might
feature two or three voices singing in close harmony, and
again, which of these lines constitutes the main melody may be
debatable. In the first bar of Example C, Figure 4, for instance,
one vocal part stays on B while the other outlines a descending
minor triad. For the 25 songs that we both transcribed, we
resolved all large-scale differences of these kinds in order to
facilitate comparison; however, we did not attempt to resolve
differences in the details of the transcriptions.

After resolving the large-scale differences described above,
we compared our 25 overlapping transcriptions in the follow-
ing way. Given two transcriptions T1 and T2, a note N in T2 is
‘matched’ in T1 if there is a note in T1 with the same pitch and
onset time as N; the proportion of notes in T2 that are matched
in T1 indicates the overall level of agreement between the two
transcriptions. We used this procedure to calculate the degree
to which DT’s transcriptions matched TdC’s, and vice versa. If
we arbitrarily define one set of transcriptions as ‘correct’ data
and the other as ‘model’ data, these statistics are equivalent to
precision and recall. We can combine them in the conventional
way into an F score:

F = 2/ ((1/precision) + (1/recall)) . (1)

Roughly speaking, this indicates the proportion of notes
on which our transcriptions agree. (If precision and recall are
very close, as is the case here, the F score is about the same as
the mean of the precision and recall.) The F score for our 23
transcriptions was 0.893. We also experimented with ‘slack’
factors in both pitch and rhythm. If pitch slack is set at one
semitone, that means that a note will be considered to match
another note if it is at the same onset time and within one
semitone. If rhythmic slack is set at 1/8 of a bar (normally one
8th-note in 4/4 time), that means that a note may be matched
by another note of the same absolute pitch within 1/8 of a bar
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Statistical Analysis of Harmony and Melody in Rock Music 191

Fig. 4.

of it. F scores for various combinations of pitch and rhythm
slack values are shown in Table 2.

It can be seen from Table 2 that most of the differences
between our analyses can be explained as small discrepancies
of pitch and/or rhythm. We inspected these differences to
see how and where they arose. In general, we found that
TdC tended to take a more ‘literal’ approach to transcription,
transcribing exactly what was sung, whereas DT sought to
convey the ‘intended’ notes, allowing that these might not
correspond exactly to the literal pitches and rhythms. A case
in point is seen in the final note in Example C of Figure 4; TdC
transcribed this note as Eb4 while DT transcribed it as C4.
Literally, this note is approximately Eb4. However, since this
melodic phrase is repeated many times throughout the song
and generally ends with C4 (scale-degree b6), one might well
say that this is the ‘underlying’ pitch here as well, treating the
actual pitch as a quasi-spoken inflection added for emphasis.
Similar differences arose in rhythm: in some cases, TdC’s
transcription reflects a complex rhythm closely following the
exact timing of the performance, while DT assumes a simpler
underlying rhythm. While we became aware quite early on
of this slight difference in approach between us, we decided
not to try to resolve it; indeed, we felt that both ‘literal’ and
‘intended’ transcriptions might be useful, depending on the
purpose for which they were being used. Another frequent
source of differences is ‘blue notes’, i.e. notes that fall ‘be-
tween the cracks’ of chromatic scale-degree categories. For

example,Aretha Franklin’s ‘Respect’contains many notes that
seem ambiguous between 6 and b7, such as the third note in
Example D of Figure 4. We disagreed on several of these notes,
though there did not seem to be a particular bias on either of
our parts towards one degree or the other.

Despite these differences, the F score of 0.893 between our
transcriptions showed a high enough level of agreement that
we felt confident enough to divide the melodic transcription
task between us. Each of our 100 melodic transcriptions was
combined with the corresponding harmonic analysis by the
same author (DT or TdC) to create a corpus of complete
melodic-harmonic encodings for 200 songs. This 200-song
collection comprises the dataset used for the statistical analy-
ses described below.

3. Overall distributions of roots and scale-degrees
In the remainder of the article, we present some statistical
investigations of our data, and consider what they might tell us
about rock more broadly. In de Clercq and Temperley (2011),
we presented a smaller version of the harmonic corpus (just
the ‘5×20’ portion) and some statistical analyses of that data.
Our focus there was on the distribution of harmonies and on
patterns of harmonic motion. Here we focus on several further
issues, incorporating the melodic data as well.

As a preliminary step, it is worth briefly examining a central
issue from our previous study in light of this larger group of
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192 David Temperley and Trevor de Clercq

Fig. 5. Root distributions in the rock corpus. For the pre-tonic and post-tonic distributions, I is excluded.

Fig. 6. Scale-degree distributions in a corpus of common-practice excerpts.

songs: the overall distribution of harmonies and scale-degrees.
Figure 5 shows the distribution of chromatic relative roots, i.e.
roots in relation to the local tonic, for our 200-song dataset.
Note here that IV is the most common root after I, followed by
V, then bVII, then VI. The graph also shows the proportional
frequency of roots immediately before and after I (excluding
I); IV is the most common chord in both ‘post-tonic’ and ‘pre-
tonic’positions.This data confirms the findings in our previous
study of the 5×20 corpus. In general, the progressions of
rock reflect a tendency towards temporal symmetry; the strong
directional tendencies of classical harmony (e.g. the fact that
IV goes to V much more often than the reverse) are not nearly
as pronounced in rock.

We now turn to the distribution of scale-degrees, i.e. pitches
in relation to the tonic. This issue relates to the question of
whether rock has a global ‘scale’ that favours some scale-
degrees over others. Before examining our corpus data, it
is interesting to consider similar data from common-practice
music (eighteenth- and nineteenth-century Western art music).
Figure 6 shows data from a corpus of 46 common-practice ex-
cerpts taken from a music theory textbook (Kostka & Payne,
1995; Temperley, 2001). In common-practice music, pieces
(or sections of pieces) are typically identified as major or mi-
nor; thus Figure 6 shows the data for major and minor excerpts
separately. As one might expect, the data from the major-
key excerpts strongly reflects the major scale and the data
from the minor-key excerpts reflects the harmonic minor scale

(containing degrees 1−2−b3−4−5−b6−7); in both profiles,
tonic-triad degrees have higher values than other degrees.
The figure also shows the data for major and minor excerpts
combined. This reflects the union of the major and harmonic
minor scales; all twelve scale-degrees are relatively frequent
except for b2, #4, and b7. (The b7 degree is a special case; it
is part of the descending melodic minor scale, but not nearly
as common in minor as 7.) The greater frequency of major
degrees over minor degrees is mainly due to the fact that there
are more major-key excerpts in the corpus.

Scale-degree distributions can be generated from our rock
corpus in two ways. First, we can generate them from the
harmonic analyses, by taking each chord to denote a single
occurrence of each pitch-class implied by the Roman numeral.
For example, I of C major would contain one C, one E, and
one G. Unlike the root distribution shown in Figure 5, this
distribution incorporates information about chord quality and
type (major versus minor, triad versus seventh). However, it
does not fully represent the true scale-degree distribution of
the corpus. For example, the span of a chord may include many
repetitions of a single pitch-class (or doublings in different
octaves), or the pitch-class may not occur at all (it may only
be implied); the span may also include notes that are not in the
chord. Still, this method provides a first approximation. The
scale-degree distribution derived from our harmonic analyses
is shown in Figure 7, along with the aggregate scale-degree
distribution for common-practice music.
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Fig. 7. Scale-degree distributions in common-practice music, rock harmony, and rock melody.

Another way to generate a scale-degree distribution is from
the melodic transcriptions; this can be done by simply count-
ing up the occurrences of each scale-degree. This melodic data
is shown in Figure 7 as well. It, too, provides only a partial
picture of rock’s scale-degree distribution, since it ignores
the accompaniment, backing vocals, and melodic instrumental
lines; but the melodic information does presumably include
some non-chord tones, so in this respect it complements the
harmonic scale-degree distribution.

It can be seen from Figure 7 that the three distributions—the
common-practice distribution, the rock harmony distribution,
and the rock melody distribution—are all quite similar. In all
three, the most frequent scale-degree is 1, followed by 5. The
similarity between the profiles is greatest in the bottom half
of the scale. All three distributions can be seen to reflect the
primacy of the major scale: 2 > b2, 3 > b3, 6 > b6, and 7 >

b7. The one exception, one that we found quite surprising, is
that in the melodic distribution—unlike the other two—b7 is
more common than 7.1 We return to this topic below.

Elsewhere, one of us (Temperley, 2001) has proposed that
rock is based on a global scale collection containing all 12
scale-degrees except for b2 and #4—the ‘supermode’. This
concept is supported by the current data. In both the har-
monic and melodic rock distributions, the two least frequent
scale-degrees are b2 and #4. (This is almost true in the
common-practice distribution as well, but b7 is just slightly
less common than #4.) This scale could be viewed as the union
of the major and natural minor scales; it also corresponds to a
set of ten adjacent positions on the circle of fifths. We should
note, however, that in the melodic data, b6 is only slightly
more common than b2 and #4; a classification of scale-degrees
into ‘scalar’ and ‘chromatic’ might well place b6 in the latter
category.

It might be argued that these aggregate scale-degree distri-
butions tell us little, since most actual rock songs use only

1In a large corpus of European folk music, the Essen Folksong
Collection (Schaffrath1995; Temperley, 2007), b7 is more common
than 7 in minor-key melodies, though 7 is more common than b7
overall.

a subset of these degrees; that is, they employ some kind
of smaller scale collection within the ‘supermode’ (just as
most classical pieces use the major or minor scales rather than
the union of them). But what exactly are these smaller scale
collections? We return to this issue in Section 5 below.

4. Key-finding
4.1 Background

How do listeners determine the key of a rock song as they hear
it? This is a basic and important question that can be asked
about any kind of tonal music. The problem of ‘key-finding’,
as it is sometimes called, has received considerable attention
in music psychology (for a review, see Temperley, 2007b).
Key-finding has practical implications as well, since many
music-processing tasks depend on having the correct tonal
framework. For example, in identifying one song as a version
or ‘cover’ of another, what is crucial is not their melodic or
harmonic similarity in absolute terms—the two songs may
well be in different keys—but rather, their similarity in relation
to their respective keys (Serrà, Gómez, & Herrera, 2010).

Key-finding models can be classified as to whether they
accept audio or symbolic information as input. Clearly, audio-
input models more directly reflect the situation of human
listening. However, much of the information in an audio signal
is presumably of little relevance to key—information such as
timbre, percussion parts, small nuances of pitch (e.g. vibrato),
and lyrics. A reasonable approach to key-finding would be to
extract the information that is crucial for key identification—
primarily, categorical pitch information—and then perform
key-finding on that reduced representation. Indeed, some
audio key-finding models have taken exactly this approach
(Cremer, 2004; Pauws, 2004). Symbolic key-finding models—
such as the ones we present below—could be seen as propos-
ing solutions to the second part of this process.

Most symbolic key-finding models have employed what
could be called a distributional approach. Each key is as-
sociated with an ideal distribution of pitch-classes (known
as a ‘key-profile’), and the key whose distribution most closely
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194 David Temperley and Trevor de Clercq

matches that of the piece is the preferred key; this is the
essential idea behind the classic Krumhansl–Schmuckler key-
finding model (Krumhansl, 1990) and several later models
(Vos & Geenen, 1996; Shmulevich & Yli-Harja, 2001;
Temperley, 2007b). The approach of Chew (2002) is similar,
though both keys and pieces are represented by points in a
spiral spatial representation. For audio key-finding, explicit
pitch information is of course not available; many models
instead use chromas, octave-spaced frequency components
in an audio signal corresponding to pitch-classes
(Purwins, Blankertz, & Obermayer, 2000; Chai & Vercoe,
2005; Gomez, 2006; Izmirili, 2007). A characteristic chroma
profile can be created for each key, and this can be matched
to the chroma content of the piece in a manner similar to
key-profile models. Some studies have addressed the more
difficult problem of deriving both harmonic structure and key
simultaneously; such models are able to take into account
the interdependence of harmony and key (Raphael & Stod-
dard, 2004; Lee & Slaney, 2007; Mauch & Dixon, 2010;
Rocher, Robine, Hanna, & Oudre, 2010; Papadopoulos &
Peeters, 2011).

While most of the above-mentioned studies focus on
classical music, several of them explore key estimation in
popular music. Most of these employ audio input. Lee and
Slaney (2007), Mauch and Dixon (2010), and Rocher et al.
(2010) test their models on the CDM Beatles corpus, men-
tioned earlier; Izmirli (2007) and Papadopoulos and Peeters
(2011) use both classical and popular materials. Very few
models have addressed the specific problem addressed here,
namely, the identification of key in popular music from sym-
bolic information. One study deserving mention is that of
Noland and Sandler (2006). This model estimates key from
the transitions between chords (labelled as major or minor
triads) and is tested on the CDM Beatles corpus; the model
identifies keys with 87% accuracy.

In what follows, we explore a variety of methods for
identifying key in popular music, using our melodic tran-
scriptions and harmonic analyses as input. We begin by con-
sidering several models that employ pitch-class distributions;
we then consider ways of estimating key directly from har-
monic information. All of our models use the same basic
approach to parameter-setting and testing. The set of 200
melodic-harmonic analyses described above (100 by DT, 100
by TdC) was randomly split into two sets of 100; one set was
used for training (parameter-setting) and the other set was used
for testing.

Most work on key estimation in popular music has identified
keys as major or minor, following the common-practice key
system. However, we found in creating our corpus that it was
often quite problematic to label songs as major or minor (we
return to this issue in Section 5). Thus, we simply treat a ‘key’
in rock as a single pitch-class. Another issue that arises here
concerns modulation, that is, changes of key within a song.
While most rock songs remain in a single key throughout,
some songs change key: 31 of the 200 songs in our corpus con-
tain at least one key change. All songs containing modulations

were placed in the training set; thus all songs used for testing
contain just one key. The identification of modulations within
a song is an interesting problem, but we do not address it here.

4.2 Pitch-based key-finding

The most obvious way to apply a pitch-based key-finding
strategy given our corpus is simply to use the melodic tran-
scriptions. A key-profile—a normative distribution of scale-
degrees—can be generated from the melodic transcriptions
in the training set. The resulting profile is very similar to the
melodic scale-degree distribution shown in Figure 7 (it is just
slightly different since it is based on 100 songs rather than
200). Transposing the profile produces a pitch-class profile
for each key. The key of each song in the test set can then
be chosen by finding the pitch-class distribution of the song,
which we call an input vector (following Krumhansl, 1990),
and choosing the key whose profile best matches the input
vector. We measure the similarity between a key-profile and
an input vector using a probabilistic method proposed by
Temperley (2007b). If all keys are equal in prior probability:

argmaxkey P(key|song) = argmaxkey P(IV |key) (2)

= argmaxkey log P(IV |key)

= argmaxkey

∑

pc

IV (pc) log KPkey(pc), (3)

where IV is an input vector, KP is a key-profile, pcs are pitch
classes, IV (pc) is the input-vector value for a pc, and KP(pc)
is the key-profile value for a pc. The final expression above
can also be viewed as the (negative) cross-entropy between the
key-profile and the input vector.Asimilar matching procedure
is used in all the models presented below.

We call this Model 1; it is essentially equivalent to the mono-
phonic key-finding model proposed in Temperley (2007b).
Table 3 shows the model’s performance on the 100-song test
set. We also reasoned that it might help to weight each note
according to its duration, as in Krumhansl’s (1990) model.
This cannot easily be done in our data set, since only note
onsets are indicated, not offsets. In general, however, the
offset of a melodic note approximately coincides with the next
note onset (it could not be later than the next onset, given
the limitations of the human voice), unless the time interval
between the two onsets is very long; in the latter case, there
is often a rest between the two notes (this frequently happens
at phrase boundaries, for example). Thus we define the length
of a note as its inter-onset interval (the time interval between
its onset and the next, in metrical time) or one bar, whichever
is less. With notes thus weighted for duration, key-profiles
and input vectors can be constructed as they were in Model 1.
This is Model 2; as shown in Table 3, it performs somewhat
better than Model 1. Since long notes tend to occur at the ends
of phrases, the superior performance of Model 2 may in part
be due to the fact that it is giving extra weight to notes in
phrase-final positions.
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Statistical Analysis of Harmony and Melody in Rock Music 195

Table 3. Key-finding models.

Number of % correct
Model Description parameters

1 Melodic scale-degree (SD) distribution 12 76
2 Melodic SD distribution, weighted for duration 12 82
3 Harmonic SD distribution, weighted for duration 12 78
4 Weighted mel. SD dist. + weighted harm. SD dist. 24 86
5 Root distribution 12 77
6 Root dist. weighted for duration 12 86
7 Root dist. distinguishing metrically strong vs. weak 24 89
8 Root dist. weighted for duration, distinguishing 24 91

strong vs. weak
9 Root dist. weighted for duration, distinguishing 36 97

strong vs. weak, + weighted melodic SD dist.

Models 1 and 2 only use melodic information, and therefore
consider only part of the pitch-class content of the piece.
Another approach to pitch-based key-finding is to use a har-
monic analysis to generate an approximate distribution of
pitch-classes—taking each chord to imply one instance of
each pitch-class it contains, as was done in Section 3 above
(the resulting profile is very similar to the rock harmony dis-
tribution in Figure 7). As with our melodic models, we found
that weighting each event by its length improved performance;
in this case, the length of a note is defined by the length of
the chord that contains it, which is explicitly indicated in our
harmonic analyses. Key-profiles and input vectors can then be
generated in the usual way. The results of this model (Model 3)
are shown in Table 3; the model performs slightly less well
than the duration-weighted melodic model.

As noted earlier, the melodic and harmonic scale-degree
distributions are in a sense complementary. The harmonic
distribution includes accompaniment parts and instrumental
sections, but excludes non-harmonic notes; the melodic dis-
tribution includes such notes but considers only the melody. A
logical next step, therefore, is to combine the two distributions,
creating a profile with 24 values. This model, Model 4, per-
forms slightly better than Model 2, which considers melodic
information alone. We earlier noted some differences between
the harmonic and melodic key-profiles, notably the greater
frequency of b7 in the melodic profile; recognizing this dis-
tinction appears to have a small benefit for key-finding.

4.3 Harmony-based key-finding

Even the best of our pitch-based key-finding models leaves
considerable room for improvement. An alternative approach
is to estimate key directly from harmonic information.
Noland and Sandler (2006) employ this strategy, with good
results; their model looks at transitions between chords—the
assumption being that important information about key might
lie in the temporal ordering of chords. We have found, how-
ever, that the strong ordering constraints of classical harmony
are much less present in rock: for example, the frequency
of the IV chord does not seem to vary greatly depending on

Fig. 8. Five chord progressions. Capital letters represent major
chords.

its position in relation to the tonic (see Figure 5). Thus we
doubted that considering chord transitions would give much
boost to performance. Instead, we simply represent harmonies
in a ‘zeroth-order’fashion: the probability of a chord occurring
depends only on the key and not on the previous chord or
chords.

Our first harmony-based model simply considers the overall
distribution of roots. This is essentially a key-profile model,
similar to those presented above, but the key-profile in this
case represents the frequency of each root in relation to the
tonic—very similar to the ‘overall’ root distribution shown
in Figure 5. The input vector represents the root distribution
of a song in an absolute fashion, and the usual cross-entropy
method is used to find the best-matching key given the input.
This is shown as Model 5 in Table 3. One limitation of Model
5 is that it does not consider the durations of chords. Consider
progressions such as those in Figures 8(a) and (b); it seems
to us that C is a more likely tonic in the first case, and G
in the second, though by Model 5 the two progressions are
considered equivalent (since both contain two C chords and
two G chords). Thus we tried weighting chords by duration
(as we did with the melodic algorithms presented earlier).
We do this by treating each half-bar segment as a separate
harmonic token (whether it is the beginning of a harmony or
not), labelled with the harmony that begins or is in progress
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196 David Temperley and Trevor de Clercq

Fig. 9. Key-profiles for metrically strong and weak harmonies.

at the beginning of the segment; the key-profile and input
vector represent counts of these tokens. (About 3% of chords
in our analyses do not span any half-bar point; these are
effectively ignored.) Thus a harmony that extends over several
half-bar segments will carry more weight. The resulting model
is shown in Table 3 as Model 6.

We suggested that the preference for C over G as tonal
centre in Figure 8(a) might be due to the greater duration of C
harmonically.Another factor may be at work as well, however.
Some authors have suggested that the metrical placement of
harmonies plays an important role in key-finding in rock: there
is a strong tendency to favour a key whose tonic chord appears
at metrically strong positions (Temperley, 2001; Stephenson,
2002). This would have the desired result in Figures 8(a) and
(b) (favouring C in the first case and G in the second) but it
would also distinguish Figures 8(c) and (d) (which Model 6
would not), favouring C in the first case and G in the second,
which we believe is correct. Model 7 is similar to Model 5, in
that it counts each chord just once, but it maintains one key-
profile for chords beginning at metrically strong positions and
another profile for other chords, and also distinguishes these
cases in the input vector. We experimented with different ways
of defining ‘metrically strong’; the most effective method
was to define a strong position as the downbeat of an odd-
numbered bar (excluding any partial bar or ‘upbeat’ at the
beginning of the song). The profiles for weak and strong
harmonies are shown in Figure 9; it can be seen that, indeed,
the main difference is the much higher frequency of tonic in the
metrically strong profile. (The data in Figure 9 also indirectly
confirm our assumption that, in general, odd-numbered bars
in rock songs are metrically strong. Many rock songs are
composed entirely of four-bar units in which the first and third
bars of each unit feel metrically stronger than the second and
fourth. There are certainly exceptions, however; a number of
songs in our corpus contain irregular phrases, so that the corre-
spondence between odd-numbered bars and strong downbeats
breaks down. No doubt a more accurate labelling of metrically
strong bars would improve the performance of Model 7, but
we will not attempt that here.)

Model 7 yields a slight improvement over previous models,
but further improvement is still possible. Model 7 considers
only the starting position of chords, not their length; therefore

the two progressions in Figures 8(c) and (e) are treated as
equivalent, since in both cases, all the C chords are strong
and all the G chords are weak. But it seems to us that the
greater duration of G in Figure 8(e) gives a certain advantage
to the corresponding key. Model 8 combines Models 6 and 7:
we count each half-bar separately, but use different distribu-
tions for ‘strong’ half-bars (those starting on odd-numbered
downbeats) and ‘weak’ ones. The result on the test set is 91%
correct, our best result so far.

As a final step, we experimented with combining the harmony-
based approach with the pitch-based approach presented ear-
lier. Our harmonically-generated pitch profiles contain much
of the same information as the root-based profiles, so it seems
somewhat redundant to use them both. Instead, we combined
the melodic pitch profiles with the root profiles. Specifically,
we combined the weighted melodic profile (Model 2) with the
durationally-weighted and metrically-differentiated root pro-
file (Model 8), yielding a profile with 36 values. The resulting
model, Model 9, identifies the correct key on 97 of the 100
songs.

The accuracy of Model 9 may be close to the maximum pos-
sible, given that there is not 100% agreement on key labelling
even among human annotators. (With regard to key, our analy-
ses were in agreement with each other 98.2% of the time.) We
inspected the three songs on which Model 9 was incorrect, to
try to understand the reason for its errors. On Prince’s ‘When
Doves Cry’, the tonal centre is A but the model chose G. Much
of the song consists of the progression ‘Am | G | G |Am |’; thus
both G and Am occur at both hypermetrically strong and weak
positions. Perceptually, what favoursAover G as a tonal centre
seems to be the fact that Am occurs on the first measure of
each group of four, while G occurs on the third; incorporating
this distinction into our model might improve performance.
Another song, ‘California Love’, consists almost entirely of a
repeated one-measure progression ‘F G . . |’; G is the true tonic,
but F is favoured by the model due to its metrical placement,
outweighing the strong support for G in the melody. Finally,
in the Clash’s ‘London Calling’, the true tonal centre is E, but
the unusually prominent use of the bII chord (F major) causes
G to be favoured. The verse of this song is, arguably, tonally
ambiguous; what favours E over G seems to be the strong
harmonic and melodic move to E at the end of the chorus.
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Statistical Analysis of Harmony and Melody in Rock Music 197

These errors suggest various possible ways of improving the
model, but there does not appear to be any single ‘silver bullet’
that would greatly enhance performance.

The success of our models, and in particular Model 9, points
to several important conclusions about key-finding in rock.
First, both the distribution of roots and the distribution of
melodic pitch-classes contain useful information about key,
and especially good results are obtained when these sources of
information are combined. Second, the conjecture ofTemperley
(2001) and Stephenson (2002) regarding the metrical place-
ment of harmonies is confirmed: key-finding from root infor-
mation is considerably improved when the metrical strength of
harmonies is taken into account. Finally, we see little evidence
that considering chord transitions is necessary for key-finding;
it appears possible to achieve nearly perfect performance by
treating chords in a ‘zeroth-order’ fashion.

It is difficult to evaluate this model in relation to the other
models of key-finding surveyed earlier. To compare symbolic
key-finding models to audio ones hardly seems fair, given the
greater difficulty of the latter task. The only model designed
for symbolic key-finding in popular music, to our knowledge,
is that of Noland and Sandler (2006), which achieved 87%
on a corpus of Beatles songs (performance rose to 91% when
the model was trained on each song). Their task was some-
what more difficult than ours, as their model was required to
correctly identify keys as major or minor. On the other hand,
our models are considerably simpler than theirs. By their own
description, Noland and Sandler’s model requires 2401×24 =
57,624 parameters (though it seems that this could be reduced
by a factor of 12 by assuming the same parameters across
all major keys and all minor keys). By contrast, our best-
performing model requires just 36 parameters. In general,
our experiments suggest that key-finding can be done quite
effectively—at least from symbolic data—with a fairly small
number of parameters.

5. Clustering songs by scale-degree distribution
Another purpose for which our corpus might be used is the
categorization of songs based on musical content. While many
studies have used statistical methods for the classification
of popular music (for a review, see Aucouturier and Pachet
(2003)), none, to our knowledge, have used symbolic rep-
resentations as input. In addition, most previous studies of
music classification have had practical purposes in mind (such
as predicting consumer tastes). By contrast, the current study
is undertaken more in the spirit of basic research: we wish
to explore the extent to which rock songs fall into natural
categories or clusters by virtue of their harmonic or melodic
content, in the hope that this will give us a better understanding
of the style.

An issue of particular interest is the validity of the distinc-
tion between major and minor keys. Corpora of popular music
such as the CDM Beatles corpus (Mauch et al., 2009) and
the Million-Song Dataset (Bertin-Mahieux et al., 2011) label
songs as major or minor, and key-finding models that use these

corpora for testing have generally adopted this assumption as
well. However, a number of theorists have challenged the va-
lidity of the major/minor dichotomy for rock (Covach, 1997;
Stephenson, 2002) or have proposed quite different systems
for categorizing rock songs by their pitch content (Moore,
1992; Everett, 2004). As Moore has discussed, some songs
are modal in construction, meaning that they use a diatonic
scale but with the tonic at varying positions in the scale. For
example, the Beatles’ ‘Let it Be’, the Beatles’ ‘Paperback
Writer’, and REM’s ‘Losing My Religion’ all use the notes
of the C major scale; but the first of these three songs has a
tonal centre of C (major or Ionian mode), the second has a tonal
centre of G (Mixolydian mode), and the third has a tonal centre
of A (natural minor or Aeolian mode). Pentatonic scales also
play a prominent role in rock (Temperley, 2007a). Still other
songs employ pitch collections that are neither diatonic nor
pentatonic: for example, the chord progression of the chorus
of the Rolling Stones’ ‘Jumping Jack Flash’, Db major/Ab
major/Eb major/Bb major, does not fit into any diatonic mode
or scale. Similarly, the verse of the Beatles’ ‘Can’t Buy me
Love’ features the lowered (minor) version of scale-degree
3 in the melody over a major tonic triad in the accompani-
ment, thus resisting classification into any conventional scale.
Some authors have explained such phenomena in terms of
‘blues scales’, or blues-influenced inflections of diatonic or
pentatonic scales (van der Merwe, 1989; Stephenson, 2002;
Wagner, 2003).2

In short, the status of the major/minor dichotomy with re-
gard to rock is far from a settled issue. The statistical data
presented earlier in Section 3 could be seen as providing
some insight in this regard. On the one hand, the fact that the
scale-degree distribution of rock (both harmonic and melodic)
is quite similar to that of classical music might suggest the
presence of some kind of major/minor organization. On the
other hand, important differences also exist: in particular, b7
is much more common than 7 overall in our melodic corpus,
whereas the opposite situation is found with both major and
minor keys in classical music. To better explore this topic,
the following section presents ways of using our corpus to
determine whether the major/minor distinction is applicable
to rock, and if not, what other natural categories might exist.

5.1 The binary vector approach

To explore the presence of major and minor scales in rock,
as well as other scale formations, we need some way of mea-
suring the adherence of a song to a particular scale. As a first
step, we might define ‘adherence to a scale’ in a strict sense,
meaning that all degrees of the scale must be used and no
others. To this end, we can represent the scale-degree content
of each song as a binary 12-valued vector, with ‘1’ in each

2A number of authors have discussed the ‘blues scale’, but it is rarely
defined in a precise way. Van der Merwe (1989) defines it as the major
scale with added flat versions of the 3rd, 5th, 6th, and 7th degrees;
thus it includes all twelve chromatic degrees except b2.
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198 David Temperley and Trevor de Clercq

position if the corresponding scale-degree occurs in the song
and ‘0’if it does not; a song using all and only the degrees of the
major scale would therefore have the vector [101011010101].
We experimented with this approach in various ways, looking
at binary vectors for songs in both the melodic and harmonic
corpora, as well as the ‘union’ vectors of the two (in which
a scale-degree has the value 1 if it is present in either the
melodic or harmonic analysis or both). Table 4 shows just one
result: the 10 most common binary vectors from the melodic
data. (Bear in mind that for six of the 200 songs, there was no
melodic data.) The most common vector is the major scale,
accounting for 24 of the songs; tied for sixth place is the ma-
jor diatonic hexachord, scale-degrees 1−2−3−4−5−6. The
other scales on the list are difficult to classify; some of these
might be regarded as versions of the ‘blues scale’. The second-
most common vector, 1-2-b3-3-4-5-6-b7, might be called the
‘pentatonic union’ scale, as it is the union of the major and
minor pentatonic scales (see Figure 10). The Mixolydian,
Dorian, and Aeolian modes are all quite rare, accounting for
two, three, and two songs respectively, suggesting that ‘pure’
modality is relatively infrequent in rock.

In general, we found that the ‘binary-vector’ approach was
not very illuminating. It is difficult to make much sense of the
10 vectors in Table 4, and in any case they only account for
slightly more than half of the songs in the corpus; the other
songs are characterized by a large number of different vectors
that occur only once or a few times. We also experimented
with other kinds of binary methods of assessing adherence
to scales—for example, defining a scale to be present in a
song if its degrees were a subset or superset of the degrees
used in the song—but these methods were also found to be
unrevealing. Part of the problem is that the binary approach
gives no indication of how often each scale-degree is used

Fig. 10. The ‘pentatonic union’ scale (assuming a tonic of C)

Table 4. The ten most common binary scale vectors in the melodic
data.

Vector Name of scale (if any) Number of
occurrences

101011010101 major diatonic / Ionian 24
101111010110 ‘pentatonic union’ 18
101111110110 13
101111110111 12
101111010101 8
101011010100 major diatonic hexachord 7
101111010100 7
101111010111 6
101111011101 5
101011010111 5

in a song. There might be some scale-degrees that are used
only occasionally and incidentally, and do not really seem to
be part of the scale of the song—just as there are in classical
music (so-called ‘chromatic’ notes). From this point of view,
it seems preferable to represent each song with a real-valued
distribution of scale-degrees (either melodic or harmonic), so
that the frequency of occurrence of each degree is taken into
account. This is the approach we explore in the next section.
While we considered combining the melodic and harmonic
distributions into one, there seemed to be no principled way
of doing this (what would be the weight of the melodic dis-
tribution in relation to the harmonic one?). And in any case,
keeping the two distributions separate is quite revealing, as
we will show.

5.2 Statistical clustering

To investigate the presence of scale structures in rock using
the melodic and harmonic scale-degree distributions, we em-
ployed statistical clustering methods. A simple method that
is well-suited to the current problem is K-means clustering
(MacQueen, 1967). This approach is appropriate when the
number of categories is pre-defined, and when items are lo-
cated in some kind of multi-dimensional space. The procedure
is as follows:

(1) Assign each item to a random category.
(2) For each category, calculate the mean position in the

space of all of its members.
(3) For each item, calculate the distance between the item

and each category mean, and place the item in the cat-
egory whose mean is closest. Iterate over steps 2 and 3
until convergence.

In this case, the ‘mean position’ for a category is the mean
distribution of all the songs it contains. Rather than calculating
a ‘distance’between a song and the category mean, we use the
concept of cross-entropy: each category assigns a probability
to the song’s scale-degree distribution, and we assign the song
to the category that assigns it highest probability. The hope is
that songs with similar distributions will eventually be as-
signed to the same category, and that a category’s distribution
will be representative of the songs it contains.

The process is not guaranteed to find a global optimum,
and indeed, we found it to be somewhat unstable, converging
on different solutions from different initial states. To remedy
this, we adjusted the procedure slightly: when assigning a
song to a category, we compute the cross-entropy between all
categories and all the songs they contain, categorizing the song
in the way that yields the lowest total cross-entropy. Since the
total distribution of the songs in a category is the same as the
category distribution, and the cross-entropy between a distri-
bution and itself is simply the entropy of the distribution, this
is equivalent to finding the solution that minimizes the entropy
of the category distributions. The ‘goodness’ of a particular
solution is the mean of the entropies of the categories, with
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Statistical Analysis of Harmony and Melody in Rock Music 199

Fig. 11. Profiles for the two categories (C1 and C2) revealed by the K-means analysis of the melodic data.

Fig. 12. Profiles for the two categories revealed by the K-means analysis of the harmonic data.

each category weighted by the number of songs it contains.
This procedure was found to be stable; repeating the process
from many different initial states always led to exactly the
same solution.

The two-category solution for the melodic data is shown
in Figure 11; the categories are arbitrarily labelled 1 and 2.
Category 1 clearly represents the major scale; the seven major
degrees have much higher values than the other five. Within
the major scale, the five degrees of the major pentatonic scale
(1−2−3−5−6) have the highest values. Category 2 is more
difficult to characterize. One could call it a kind of minor
distribution, since it has a much higher value for b3 than for
3. It does not, however, resemble classical minor; 6 is much
more common than b6, and b7 is much more common than
7, whereas in classical minor the reverse is true in both cases
(see Figure 6). It is notable also that the value for 3 is fairly
high in this profile. If one were to interpret this distribution
as implying a scale, the closest approximation would appear
to be the 8-note scale 1−2−b3−3−4−5−6−b7; these eight
degrees have far higher values than the remaining four. This is
the ‘pentatonic union’ scale that also emerged as the second-
most common binary vector in the melodic data (see Table 4
and Figure 10).

The two-category solution for the harmonic data is shown
in Figure 12. Here again, category 1 very strongly reflects the
major scale. Category 2 could again be described as some kind

of minor (though the value for 3 is fairly high); b7 is far more
common than 7 (as in the melodic ‘minor’ category) but 6 and
b6 are nearly equal.

Both the melodic and harmonic data give some support to
the validity of the major/minor distinction in rock. In both
cases, two strongly distinct profiles emerge: in one profile, 3
dominates over b3, while in the other profile the reverse is true.
In all four profiles, the three tonic-triad degrees (1−3−5 for
category 1 profiles and 1−b3−5 for the category 2 profiles)
are more common than any others, giving further support to
a major/minor interpretation. It seems reasonable to refer to
these profiles as ‘major’ and ‘minor’, and we will henceforth
do so. While the major rock profiles strongly resemble clas-
sical major, the minor rock profiles are quite unlike classical
minor, favouring the lowered seventh degree and the raised
sixth, and with a significant presence of 3 as well.

Table 5. The number of songs in the major and minor harmonic and
melodic categories.

Harmonic Melodic

Major Minor

Major 98 41
Minor 9 46
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200 David Temperley and Trevor de Clercq

Fig. 13. The first eigenvector of the principal components analysis of the harmonic scale-degree vectors, showing the projection of each
scale-degree.

In both the melodic and harmonic classification systems,
there are more songs in the major category than the minor
one, though the preponderance of major songs is greater in the
harmonic data. Related to this, one might ask how strongly the
melodic and harmonic classification schemes are correlated
with one another. To address this, we can label each song
by both its melodic and harmonic categories; the numbers
are shown in Table 5. Not surprisingly (given the similarity
between the profiles of the two categorization systems), they
are indeed strongly correlated; 144 of the 194 songs (for which
there is both melodic and harmonic data) are either major in
both the melodic and harmonic systems, or minor in both sys-
tems. Interestingly, the vast majority of the remaining songs
are minor in the melodic system and major in the harmonic
one, rather than vice versa; we will call these ‘minor/major’
songs (stating the melodic category first). We noted earlier
that some songs feature a minor third in the melody over a
major tonic triad (the Beatles’ ‘Can’t Buy me Love’was given
as an example); the current data suggests that this pattern is
rather common. Closer inspection of the results showed that
the ‘minor/major’ category consists largely of 1950s songs
such as Elvis Presley’s ‘Hound Dog’, blues-influenced rock
songs such as the Rolling Stones’ ‘Satisfaction’, and soul hits
such as Aretha Franklin’s ‘Respect’.

We also experimented with higher numbers of categories. In
the melodic case, a 3-category solution (not shown here) yields
one category very similar to the 2-category major profile.
The other two categories both resemble the minor profile;
they differ from each other mainly in that one has a much
higher value for 1 and lower values for 4 and 5. (This may
reflect differences in melodic register—the part of the scale
in which the melody is concentrated—rather than in the scale
itself.) In the harmonic case, the 3-category solution is quite
different from the 2-category one: the first category reflects
major mode, the second is similar to major but with b7 slightly
higher than 7, and the third reflects Aeolian (with b3 > 3, b6
> 6 and b7 > 7). In both the melodic and harmonic data,
however, the 3-category system is only very slightly lower
in entropy than the 2-category one (less than 2%), thus it
offers little improvement over the 2-category solution as a
characterization of the data.

5.3 Principal component analysis

We explored one further approach to the classification of rock
songs: principal component analysis. Let us imagine each
song’s scale-degree distribution (melodic or harmonic) as a
point in a 12-dimensional space, with each dimension repre-
senting a scale-degree. Some dimensions may be correlated

with one another, meaning that when scale-degree X has a high
value in the distribution, scale-degree Y is also likely to have
a high value; other dimensions may be negatively correlated.
Principal component analysis searches for such correlations
among dimensions and creates new axes that represent them.
More precisely, it tries to establish a new coordinate system
that explains as much of the variance as possible among points
in the space with a small number of axes, or eigenvectors.
Each eigenvector is associated with an eigenvalue, indicat-
ing the amount of variance it explains; an eigenvector that
explains a large amount of variance can act as a kind of
summary of statistical tendencies in the data. The analysis
creates as many eigenvectors as there are dimensions in the
original data, and outputs them in descending order according
to how much variance they explain; the first few eigenvectors
(those explaining the most variance) are generally of the most
interest.

The data for the analysis is the melodic and harmonic scale-
degree distributions for individual songs, used in the clustering
experiment described earlier. We begin with the harmonic
data. The first eigenvector (that is, the one explaining the most
variance) accounted for 31% of the variance. (The second
eigenvector accounted for only 19% of the variance, and we
cannot find any good interpretation for it, so we will say no
more about it.) Figure 13 shows the projections of each of
the original dimensions on the first eigenvector. It can be
seen that the three most negative dimensions are 3, 6, and
7, and the three most positive ones are b3, b6, and b7. What
this tells us is that 3, 6, and 7 form a group of scale-degrees
that are positively correlated with one another; b3, b6, and b7
form another group that are positively correlated; and the two
groups are negatively correlated with one another. In short,
the analysis provides another strong piece of evidence that
major/minor dichotomy is an important dimension of variation
in rock music.

A similar analysis was performed with the melodic scale-
degree distributions. In this case, the first two eigenvectors
were fairly close in explanatory power, the first one explaining
25% of the variance and the second one explaining 19%.
The scatterplot in Figure 14 shows the projections of each
scale-degree on to the first (horizontal) and second (verti-
cal) eigenvectors. The first eigenvector appears to reflect the
major/minor spectrum, though not quite as clearly as in the
harmonic data; 3, 6, and 7 are positive while b3 and b7 are
negative. (b6 is also negative, but only weakly so; this may
simply be due to its low frequency in the melodic data.) The
second eigenvector is not so easy to explain. We suspect that
it reflects phenomena of register. The most positive degree
in the vertical direction is 5, and the most negative one is
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1; perhaps melodies tend to be centred on either 5 or 1, but
not both, meaning that the two degrees are somewhat nega-
tively correlated. Note further that #4, 4, and b6, like 5, are
strongly positive; no doubt, when a melody is centred on 5, it
tends to make frequent use of scale-degrees that are nearby in
pitch height. This explanation only goes so far, however; 1 is
strongly negative, but the degrees closest to it in height—b2,
2, b7, and 7—are not.

A small set of eigenvectors produced by a principal compo-
nents analysis can be viewed as a reduction or simplification
of the original space; it can then be revealing to project the
original data vectors on to that reduced space. As an ex-
ample, consider a hypothetical song whose harmonic scale-
degree vector is a perfectly even distribution of the seven
major scale-degrees, with no other scale-degrees: i.e. the vec-
tor [1/7,0,1/7,0,1/7,1/7,0,1/7,0,1/7,0,1/7]. To project this on
to the eigenvector represented in Figure 13, we take the dot
product of this vector with the eigenvector.This is proportional
to the mean of the values of the eigenvector for which the
song vector is nonzero. The location of our major (‘Ionian’)
song on the axis is shown in Figure 15(a), as well as sim-
ilar hypothetical songs in Mixolydian, Dorian, and Aeolian
modes; these are the four modes that are generally said to be
common in rock (Moore, 1992). It is well known that each
diatonic mode contains a set of seven consecutive positions
on the circle of fifths—sometimes known as the ‘line of fifths’
(Temperley, 2001)—and that the modes themselves reflect a
natural ordering on the line (see Figure 15(b)); this is exactly
the ordering that emerges from the projection in Figure 15(a).
In this sense, it could be said that the line of fifths is implicit in
the eigenvector (although the projection of individual scale-
degrees does not reflect the line of fifths, as seen in Figure 13).3

As noted earlier, the ‘supermode’—the set of all scale-degrees
commonly used in rock music, including all twelve degrees
except b2 and #4—also reflects a set of adjacent positions
on the line. It has been proposed that an axis of fifths plays
an important role in the perception of pitch and harmony
(Krumhansl, 1990) and also in the emotional connotations
of melodies (Temperley & Tan, in press), suggesting that it is
part of listeners’ mental representation of tonal music. The
implicit presence of the line of fifths in the scale-degree dis-
tribution of popular music may explain how listeners are able
to internalize it from their musical experience.

3This argument does not work so well for the Lydian and Phrygian
modes; in terms of line-of-fifths ordering of scale-degrees, Lydian
should be to the left of Ionian in Figure 15(a) but is actually to its
right, and Phrygian should be to the right of Aeolian but is actually
to its left. Because #4 and b2 are so rare, their distribution in our
corpus may not reflect their true distribution. In addition, the current
analysis is assuming only a single spelling of these pitches, but in
fact each one has two different spellings (#4 vs. b5, b2 vs. #1) which
have different locations on the line of fifths. (For all other scale-
degrees, a single spelling accounts for the vast majority of its uses.)
Incorporating spelling distinctions raises many difficult practical and
theoretical issues, however, so we will not attempt it here.

Fig. 14. The first (horizontal) and second (vertical) eigenvectors
of the principal components analysis of the melodic scale-degree
vectors.

Fig. 15. (a) Projection of hypothetical modal melodies on to the axis
shown in Figure 13. (b) Diatonic modes on the line of fifths.

We can also project each of the individual harmonic scale-
degree vectors in our corpus on to the first harmonic eigen-
vector; this gives an indication of where each song lies on the
major/minor axis. While we will not explore this in detail, the
aggregate results are shown in Figure 16; songs are ‘bucketed’
into small ranges of 0.01. The distribution that emerges is of
interest in two ways. First of all, it is essentially unimodal,
featuring a single primary peak (there is only a very small peak
toward the right end of the distribution); this suggests that rock
songs are rather smoothly distributed along the major/minor
dimension rather than falling into two neat categories. It is
also noteworthy that the primary peak is far towards the left
(major) end of the distribution; we are not sure what to make
of this.

The results presented here, as well as the results of the clus-
ter analysis presented previously, suggest that the major/minor
contrast is an important dimension of variation in the pitch
organization of rock music. The distinctively major scale-
degrees 3, 6, and 7 tend to be used together, as do the dis-
tinctively minor degrees b3, b6, and b7; and the two groups of
degrees are, to some extent at least, negatively correlated with
one another. This does not mean that the major/minor system
of classical tonality can be imposed wholesale on rock; indeed,
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202 David Temperley and Trevor de Clercq

Fig. 16. Projections of the 200 harmonic scale-degree vectors on to
the first harmonic eigenvector, bucketed into ranges of 0.01. Numbers
on the horizontal axis indicate the centre of each bucket.

we have suggested it cannot. But some kind of major/minor
spectrum is clearly operative. One might ask whether this
dimension correlates in any way to conventional generic cat-
egories of rock; we suspect that it does. For example, in terms
of our cluster analysis, we observe that heavy metal songs—
such as Steppenwolf’s ‘Born to be Wild’, AC/DC’s ‘Back
in Black’, and Metallica’s ‘Enter Sandman’—tend to be in
the minor category both melodically and harmonically, while
genres such as early 1960s pop (the Ronettes’ ‘Be My Baby’,
the Crystals’ ‘Da Doo Ron Ron’) and 1970s soft rock (Elton
John’s ‘Your Song’) tend to be melodically and harmonically
major. We have already noted that the ‘minor/major’ cluster
(songs that are minor melodically and major harmonically)
is associated with certain stylistic categories as well. From
a practical point of view, this suggests that the major/minor
dimension might be a useful predictor (in combination with
others, of course) of listeners’ judgments about style.

6. Conclusions and future directions
The statistical analyses and experiments presented in this pa-
per point to several conclusions about rock. The overall scale-
degree distribution of rock, both melodically and harmoni-
cally, is quite similar to that of common-practice music. In
rock, as in common-practice music, all twelve degrees appear
quite commonly except #4 and b2 (though b6 is borderline in
the melodic distribution). The most prominent difference is
that b7 is more common than 7 in rock melodies, whereas in
common-practice music the reverse is true. Our experiments in
key identification suggest that key-finding in rock can be done
quite effectively with a purely distributional approach, using
a combination of melodic scale-degree information and root
information, and taking the metrical position of harmonies
into account. Finally, our experiments with clustering and
principal components analysis suggest that the major/minor
dichotomy is an important dimension of variation in rock,
though it operates quite differently from that in common-
practice music in several respects. In the minor mode of rock,
if one can call it that, 6 is favoured over b6, and b7 over 7; a
significant proportion of songs are minor melodically but ma-

jor harmonically; and the distribution of songs between major
and minor appears to reflect more of a gradual continuum than
two discrete categories.

One unexpected result of our analyses is the strong presence
of the ‘pentatonic union’ scale, 1−2−b3−3−4−5−6−b7, in
the melodic data. This scale is the second most common binary
vector in the melodic transcriptions; it also emerges strongly
in the ‘minor’ category of the melodic cluster analysis. More-
over, in 37 of the 194 melodies, the eight degrees of the penta-
tonic union scale are the most frequent of the twelve chromatic
degrees; no other scale (of comparable size) seems to rival this
except the major scale, whose degrees are the most frequent
in 46 songs. Thus, three different statistical methods point to
the pentatonic union scale as an important tonal structure in
rock. To our knowledge, this scale has not been discussed
previously. As well as being the union of the two pentatonic
scales, it has several other interesting theoretical properties:
it is the union of the Mixolydian and Dorian modes; it spans
eight adjacent positions on the circle of fifths; and it is the
union of four adjacent major triads on the circle of fifths (I-IV-
bVII-bIII). The scale can also be generated by starting at 1 and
moving a major second up and down (yielding b7 and 2) and
a minor third up and down (adding 6 and b3), and then doing
the same starting from 5 (adding 4 and 3). It could therefore be
said that the scale emerges from pentatonic neighbour motion
from 1 and 5; this seems significant in light of the recognized
importance of stepwise melodic motion in music cognition
(Bharucha, 1984; Huron, 2006).

The uses of the pentatonic union scale appear to be quite
varied. In some songs, it arises from an alternation between
two sections using smaller (e.g. diatonic) collections—for
example, the Beatles’ ‘Norwegian Wood’, in which the verse
is Mixolydian and the bridge is Dorian (see Figure 17). In such
cases, one might question whether the pentatonic union set is
acting as a true ‘scale’. In a number of other songs, however,
the degrees of the set all appear within a single section; a
case in point is the verse of the Rolling Stones’ ‘Satisfaction’
(see Figure 18). Of particular interest here is the alternation
between 3 and b3. To some extent this may be explained
harmonically—the I chord in bars 1–2 of the example calls
for 3 (the third of the chord), whereas the IV chord in bars 3–4
makes b3 more compatible (forming a major–minor seventh
chord). But this reasoning cannot explain the b3 over the I
chord at the end of the example (the beginning of the chorus).
Further examination of this and other examples is needed to
better understand the ways that the pentatonic union scale is
used.At this point, human analysis must take over from corpus
analysis; still, this example illustrates the power of corpus
analysis to suggest new avenues for analytical and theoretical
exploration.

The current study has barely scratched the surface of what
might be done with our harmonic and melodic corpus. We have
said almost nothing about rhythm, though both our melodic
and harmonic corpora contain rhythmic information; this data
might be used, for example, to investigate syncopation, a very
important part of rock’s musical language (Temperley, 2001).
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Fig. 17. The Beatles, ‘Norwegian Wood’. (a) First four measures of verse; (b) first three measures of bridge.

Fig. 18. The Rolling Stones, ‘Satisfaction’, first verse and beginning of chorus.

Much more could also be done with the pitch information in
our melodic corpus. One might investigate patterns of melodic
shape, as has been done quite extensively for many other
musical styles (Huron, 2006). One could also examine the
alignment of melody and harmony, which some authors have
suggested is not as strongly constrained in rock as it is in
common-practice music (Moore, 1992; Temperley, 2007a).
We intend to investigate some of these issues in further work,
and we hope that others will find our corpus useful as well.
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