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Information Flow and Repetition 
in Music

David Temperley

Abstract  A corpus analysis of common-practice themes shows that, when an intervallic pattern is repeated 
with one changed interval, the changed interval tends to be larger in the second instance of the pattern than 
in the first; the analysis also shows that the second instance of an intervallic pattern tends to contain more 
chromaticism than the first. An explanation is offered for these phenomena, using the theory of uniform infor-
mation density. This theory states that communication is optimal when the density of information (the nega-
tive log of probability) maintains a consistent, moderate level. The repetition of a pattern of intervals is (in 
some circumstances, at least) highly probable; in some cases, the information density of such repetitions may 
be undesirably low. The composer can balance this low information by injecting a high-information (i.e., low-
probability) element into the repetition such as a large interval or a chromatic note. A perceptual model is 
proposed, showing how the probabilities of intervals, scale degrees, and repetition might be calculated and 
combined.

consider the melodies shown in Example 1. These five melodies all have 
several things in common. First and most obviously, each one involves a 
melodic pattern that is repeated in some way (marked with brackets above 
the score). In each case, the pattern is repeated at a different pitch level from 
the original, but the repetition maintains the same rhythm and, for the most 
part, the same pattern of generic intervals (i.e., intervals measured in steps 
on the staff). However, the pattern is not simply shifted along the underlying 
scale; in each case, it is slightly altered in some way. In the first melody, for 
example, a sixth in the first instance of the pattern (E♭4–C5) is changed to 
an octave in the second instance (F4–F5); similarly, in the third, fourth, and 
fifth melodies, an interval in the first pattern instance is replaced by a larger 
generic interval in the second instance. Other changes involve the addition 
of chromaticism: in the second and fifth melodies, diatonic scale degrees in 
the first instance of the pattern are replaced by chromatic degrees in the 
second instance.

There is another, more abstract commonality across these melodies 
that is perhaps less obvious than those mentioned above. Large intervals are 

I am grateful to David Huron for making available to me his Humdrum encoding of the Barlow and 
Morgenstern corpus.
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1  This claim may also be valid for other musical styles, but 
I do not investigate that here.

less probable than small ones, and chromatic scale degrees are less probable 
than diatonic ones. (These claims are probably uncontroversial, but some 
evidence for them is given below.) Thus changing a small interval to a larger 
one is similar to changing a diatonic scale degree to a chromatic one: both 
kinds of changes lower the probability of the pattern. The thesis of this article 
is that this is a general characteristic of common-practice Western music: 
when an intervallic pattern is repeated with alterations, the alterations tend 
to lower the probability of the pattern rather than raising it.1 (This is a ten-
dency rather than a law; in some cases the opposite occurs. For example, the 
third instance of the pattern in Example 1d features a smaller interval than 
the previous one.) I will demonstrate that this tendency holds true statistically, 
and I will offer an explanation for it.

This study adopts a theoretical framework initially proposed in psycho-
linguistics, the theory of uniform information density (UID) (Levy and Jaeger 
2007). In mathematical terms, the information carried by an element in a 
message is its negative log probability (see Figure 1). Informally speaking, the 
information of something represents how surprising it is. An element with a 

Example 1.  (a) Mozart, “Non so piu” from Le nozze di Figaro, mm. 1–5; (b) Mozart, Piano Trio 

K. 548, II, mm. 1–2; (c) Beethoven, Sonata op. 2/3, I, mm. 1–4; (d) Schubert, Impromptu op. 

90/4, mm. 47–50; (e) Brahms, Violin Sonata op. 100, I, mm. 1–10
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Temperley, Ex. 1 (correx 7/18/14):

Temperley, Ex. 2:
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Temperley, Ex. 3:
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distance 7

Onset match at
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157David Temperley    Information Flow and Repetition

probability of 1 is completely predictable and thus carries no information; 
as elements decrease in probability, they become more surprising and hence 
more informative. Something with a probability of zero is completely surpris-
ing and thus conveys infinite information. (In technical terms, the infor
mation of an element corresponds to the number of bits—binary symbols—
needed to represent it in the most efficient possible encoding of the entire 
language.)

Given a series of elements presented over time, we can define the infor-
mation density (or information flow) as the amount of information per unit of 
time. Psycholinguistic studies have shown that low-probability elements (e.g., 
rare or unexpected words) take longer to process (Levy 2008); this suggests 
that there is an upper limit to the level of information density that human 
perceivers can easily absorb. But it is also, presumably, desirable for infor
mation flow to be fairly close to that limit, so as to maximize the amount of 
information conveyed. The UID theory thus states that it is preferable for 
information flow to maintain a fairly consistent, moderate level. One predic-
tion that follows from this is that low-probability elements should be pro-
longed or spaced out in time more than high-probability elements. This pre-
diction is confirmed by psycholinguistic studies showing that low-probability 
words and syllables in speech tend to be pronounced more slowly (Bell et al. 
2003; Aylett and Turk 2004) and that optional words (e.g., that in the sentence 
“I knew that he was coming”) are more likely to be used when nearby words 
and syntactic structures are low in probability (Jaeger 2010). Similar phenom-
ena have been observed in music as well: in a study of expressive performance, 

Figure 1.  The relationship between probability and information
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2  One might wonder if constraints on production play a 
role here: perhaps speakers just need more time to pro-
nounce uncommon words, and performers need more 
time to play unexpected harmonies. It seems unlikely, 
however, that the observed effects are due to such fac-
tors. In Bartlette 2007 the passages were simple tonal 
progressions, and the participants (graduate-level piano 
majors) were allowed to practice them as long as they 
wished before performing them; this suggests that fluc-
tuations in timing were due not to difficulty but to an inten-
tional expressive strategy. For discussion of this issue with 
regard to linguistic phenomena, see Jaeger 2010.

3  The distinction between contextual and schematic prob-
ability is similar to Eugene Narmour’s (1990) distinction 
between “intra-opus” and “extra-opus” norms and to David 
Huron’s (2006) distinction between “dynamic” and “sche-
matic” expectations. The distinction is not clear-cut: one 
could say that even things such as interval size and scale 
degree, which I consider schematic, depend on context in 
a way (on the previous note and on the key, respectively). 
The term contextual is meant to imply a more specific pre-
diction, unique to a particular context, such as the expecta-
tion for the repetition of a previous melodic pattern. One 
could also say that the role of contextual probabilities is 
itself schematic, that is to say, style dependent: motivic 
repetitions occur more often in some styles than in others.

Christopher Bartlette (2007) found that performers tend to take more time 
on unexpected (e.g., chromatic) harmonies.2

The use of information-theoretic and other probabilistic concepts in 
music research has a long history, going back more than half a century (Meyer 
[1957] 1967; Youngblood 1958), and has attracted renewed interest in recent 
years (e.g., Conklin and Witten 1995; Pearce and Wiggins 2006; Temperley 
2007; Mavromatis 2009). Thus the application of UID to music would seem to 
be a natural topic for investigation. The focus of this study is not so much on 
the timing of events, as in previous UID research, but rather on a further 
prediction that follows from the UID theory—one that, to my knowledge, has 
not been widely explored. The prediction could be stated as follows: When a 
message (or part of a message) is low in probability in one respect, it will tend to be high 
in probability in other respects, and vice versa.

This prediction is quite general and could be interpreted musically in 
a variety of ways. To apply it to the current situation, we must distinguish 
between schematic probability and contextual probability. The schematic prob-
ability of an event is its probability in relation to the musical style as a whole; 
its contextual probability is its probability in relation to its specific context. I will 
argue that, in certain circumstances, it is highly likely for an intervallic pat-
tern to be repeated: the contextual probability of melodic segments that 
repeat previous intervallic patterns is therefore quite high. The UID theory 
predicts that, to maintain an optimal level of information flow, the high con-
textual probability of these melodic segments should be balanced by a reduc-
tion in their schematic probability; this is accomplished by expanding their 
intervals and adding chromaticism.3

In what follows, I show, through a corpus analysis, that the relationships 
asserted above between repetition, interval size, and chromaticism do indeed 
hold true. I then offer an explanation for these phenomena, based on a model 
of melodic perception and the UID framework just described. The model is 
“tested” only in a qualitative, informal way; no rigorous evaluation of it is 
presented. Even so, it seems worthwhile to flesh out the model in some detail, 
as this raises some interesting and important issues in music perception.
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159David Temperley    Information Flow and Repetition

4  The dictionary can be accessed online at www.multi 
medialibrary.com/barlow.

5  The amount of music notated for each theme appears to 
be somewhat arbitrary and may be governed largely by the 
requirement that each entry should occupy exactly one 
line of notation. Some effort was apparently made to make 
entries correspond to musically meaningful units such as 
four-measure or eight-measure phrases, but the span of 
music included does not always correspond to what we 

would consider the “theme” (and this is somewhat subjec-
tive in any case). This does not appear to be a problem for 
this study.

6  As is discussed below, I exclude themes with changing 
time signatures and exotic rhythms such as quintuplets. 
This has the effect of excluding many of the themes by 
more progressive twentieth-century composers such as 
Bartók and Stravinsky (which is desirable, given that I want 
the corpus to represent common-practice music).

Testing the predictions

I asserted in the second paragraph of this article that “when an intervallic 
pattern is repeated with alterations, the alterations tend to lower the proba-
bility of the pattern rather than raising it.” We can express this idea more 
concretely in the form of two specific predictions. Think of each of the 
repeated patterns in Example 1 as a series of generic intervals; for instance, 
in Example 1d, the underlying pattern is +3 −1 (ascending fourth, descending 
step). The first prediction is that, when the second instance of the pattern 
changes one of the intervals, the changed interval in the second instance will 
tend to be generically larger than the corresponding interval in the first 
instance. The second prediction concerns chromaticism. We can think of any 
chromatic note in either the first or second instance of a repeated pattern as 
an alteration (assuming that the “default” version of the pattern stays entirely 
within the scale of the key). The prediction is that chromatic alterations will 
tend to occur in the second instance of the pattern more often than in the 
first. The objective is to test these two predictions.

This study uses a corpus of melodies taken from Harold Barlow and 
Sam Morgenstern’s Dictionary of Musical Themes (1948), encoded on computer 
by David Huron in Humdrum format.4 The corpus (hereafter the B&M cor-
pus) contains 9,788 themes, all from instrumental pieces; most are opening 
themes, but the corpus also includes a significant number of other themes 
(e.g., second themes from sonata movements). The average length of themes 
is 4.9 measures; fewer than 2 percent of them are longer than 8 measures.5 
Table 1 shows the ten most frequently occurring composers in the corpus, 
with the number of themes by each one. To a first approximation, it seems 
reasonable to describe the corpus as a sample of “common-practice” themes, 
defining this term in the usual way to refer to eighteenth- and nineteenth-
century Western art music. Fewer than 1 percent of the themes predate 1700. 
Roughly 20 percent of them date from after 1900; many of these are by con-
servative composers (e.g., Rachmaninoff and Respighi) whose style is rooted 
in the common practice.6

The first thing needed is a way of identifying repeated intervallic pat-
terns. I initially define an “intervallic repetition” as any pattern of generic 
intervals that is immediately repeated, with exactly the same rhythm (this 
definition will be refined below). Intervallic repetitions are ubiquitous in 
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common-practice music; diatonic sequences are perhaps the most obvious 
example, but they are often seen also in thematic passages that are not nor-
mally considered sequential. The openings of Mozart’s fortieth, Beethoven’s 
fifth, and Brahms’s fourth symphonies are famous examples; Example 2 
shows three others. Experimental work has shown that listeners can easily 
detect such repetitions—even when the pattern of chromatic intervals does 
not exactly repeat—and use them to encode melodies efficiently (Deutsch 
1980). We define generic interval in the usual way, in terms of the number of 
steps on the staff; for example, the interval from F4 to A4 is a generic interval 
of +2 (an ascending third) and thus matches any other generic interval of +2, 
such as G4–B4, G4–B ♭4, G♯4–B ♭4, or G♯4–B ♭♭4 (though the last of these is 
probably nonexistent). (The Humdrum encoding of the corpus includes 
pitch spelling information, allowing us to make enharmonic distinctions, e.g., 
distinguishing F4–A ♭4, which is a third, from F4–G♯4, which is a second.)

Table 1.  The most commonly occurring 

composers in the Barlow and 

Morgenstern corpus

Composer Number of themes

Mozart
Beethoven
Haydn
Brahms
Bach
Schubert
Handel
Schumann
Dvořák
Chopin

587
568
423
383
375
274
263
238
210
200

Example 2.  (a) Haydn, Quartet op. 54/2, III, mm. 1–2; (b) Beethoven, Quartet op. 59/3, IV, mm. 

1–4; (c) Beethoven, Sonata op. 2/1, III, mm. 41–43
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Temperley, Ex. 1 (correx 7/18/14):
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7  Distance 1 is a partial exception, as it is less frequent 
than several nonparallel distances in onset matches, though 
not in interval matches as a proportion of onset matches 
(IMs/OMs). The high values for distances 1 and 2 might be 
said to represent not so much pattern repetition as inertia, 
the tendency for an interval (especially a step) to be imme-

diately followed by another interval of the same size and 
direction (Larson 2004). This process is a form of autocor-
relation, a widely used technique in computational music 
research for problems such as meter identification (Brown 
1993) and automatic transcription (Klapuri 2004).

The concept of intervallic repetition will be further restricted in two 
ways. We may define the distance of a repetition as the temporal interval 
between corresponding notes in the two instances of the pattern (e.g., 
between the first note of the first instance and the first note of the second). 
While repetitions may occur at any distance, some distances are much more 
likely than others. In particular, it is especially likely for patterns to repeat at 
distances that correspond to levels of the metrical (and hypermetrical) struc-
ture. This is the case with the patterns in Examples 1 and 2, all of which 
repeat at distances of one or more measures. The general validity of this 
point can be demonstrated using the B&M corpus. Define an onset match at 
a distance N as a case where a note onset is followed by another note onset 
exactly N sixteenth-note beats later (see Example 3). Considering only melo-
dies in 4/4 (with no metrical divisions below the sixteenth), the number of 
onset matches in the corpus was counted at each distance of one through 
thirty-two—that is, up to a distance of two measures (see Table 2). Then 
define an interval match as an onset match between a note X and a following 
note Y in which the generic interval to X is the same as the interval to Y (see 
Example 3). These data are also shown in Table 2. The probability of an inter-
val match is highest at distances that correspond to levels of the 4/4 metrical 
grid—what we will call metrically parallel distances: 1, 2, 4, 8, 16, and (assum-
ing a duple hypermetrical level) 32 sixteenths.7 (This is true whether one 
considers the sheer number of interval matches or the proportion of onset 
matches that are interval matches, shown in the last column.) There is evi-
dence also that listeners are particularly sensitive to metrically parallel repeti-
tions. It has been observed that a melodic pattern that is performed in two 

Example 3.  Beethoven, Sonata op. 2/3, I, mm. 1–2, 

showing onset matches at distances of 7 and 8. Only 

one of the three onset matches is an interval match: 

both notes are approached by a descending second. 

(The first note of the melody is not counted either in 

onset matches or in interval matches, as it is not 

approached by any interval.)
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Snarrenberg, Ex. 4 (correx 9/22/14):
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different metrical contexts can seem like two totally different melodies (Povel 
and Essens 1985, 432; Sloboda 1985, 84); this is essentially what would occur 
if a pattern were repeated at a nonparallel distance (e.g., in a 4/4 context, a 
pattern that was repeated after seven sixteenths). I suspect that many non-
parallel repetitions are not even perceived by listeners as repetitions.

For simplicity, I focus here on repetitions that occur at a distance of 
exactly one measure. While this excludes many significant repetitions, it has 
the advantage of being easily and objectively identifiable in all themes, regard-
less of the time signature. Themes that change time signature are a problem, 
as it is difficult to decide which distance to look at; such themes are disre-
garded in the counts reported below. (Themes with exotic time signatures, 

Table 2.  Onset matches (OMs) and interval matches (IMs) at 

different distances in themes in 4/4 in the B&M corpus

Distance (in 16ths) OMs IMs IMs/OMs

  1
  2
  3
  4
  5
  6
  7
  8
  9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

9,202
23,085

7,166
31,542

6,399
19,005
6,248

30,332
5,817

16,713
5,128

24,528
4,791

15,265
4,964

25,856
4,486

13,252
3,654

19,199
3,121

10,979
3,011

18,216
2,580
9,326
2,215

14,860
1,907
8,539
2,153

16,527

3,568
7,650
1,852
9,365
1,397
4,115
1,392
9,103
1,253
3,259

985
5,075

957
3,084
1,108
8,448
1,081
2,789

725
3,740

649
1,992

592
3,955

537
1,739

425
3,013

419
1,893

538
6,459

.388

.331

.258

.297

.218

.217

.223

.300

.215

.195

.192

.207

.200

.202

.223

.327

.241

.210

.198

.195

.208

.181

.197

.217

.208

.186

.192

.203

.220

.222

.250

.391

Metrically parallel distances are shown in boldface.
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8  One could say that the identification of repeated pat-
terns depends on the grouping structure (as defined by 
Lerdahl and Jackendoff 1983)—stipulating, perhaps, that 
a pattern must correspond to a low-level melodic “group.” 
This seems doubtful in the case of Example 2c; the group 
of m. 1 surely includes the pickup note, but this is not part 
of the repeated pattern. In many cases the identification of 
groups is ambiguous and subjective. Grouping also depends 
partly on repeated patterns or “parallelism” (Lerdahl and 
Jackendoff 1983, 50–51); thus using grouping structure 
to identify repeated patterns creates a “chicken-and-egg” 
problem.

9  Thus a near-repetition must preserve the same note-to-
note contour in both instances of the pattern. This restric-
tion requires some explanation. Huron (2006, 75–77) notes 

that, in many musical idioms, the distributions for ascend-
ing and descending intervals are significantly different: skips 
tend to be ascending while steps are more often descend-
ing. This makes it problematic to compare ascending and 
descending intervals; for example, a large ascending skip 
may be more probable than a smaller descending skip. This 
asymmetry is only subtly evident in the B&M corpus (see 
Figure 3); however, it seemed safest to avoid the problem 
by comparing only intervals of the same direction. The re- 
quirement that an intervallic repetition (or near-repetition) 
must contain at least two intervals means that at least one 
interval will be matching between the two instances, even 
in a near-repetition. This is essential for the argument, 
since the changed interval is supposed to balance the low 
information of one or more repeated intervals.

such as 5/4, and exotic rhythms, such as quintuplets, are also excluded, since 
they would greatly complicate the data collection process; some other themes 
are excluded due to errors or problems in the Humdrum encoding. Alto-
gether, 627 themes are excluded for these reasons.)

While a pattern may repeat at a distance of one measure, this does not 
necessarily mean it begins on the downbeat; frequently it does not. The 
repeated pattern in Example 2a begins just before the downbeat; the one in 
Example 2b begins on the fifth eighth of the measure. To identify in an objec-
tive way where a pattern begins is a difficult matter. In Example 2c, the pat-
tern could begin on the first downbeat (as shown by the solid brackets), but 
it could also begin on the second eighth of the measure (as shown by the 
dotted brackets).8 We avoid this problem by considering only patterns that 
include all the notes of a single measure. Thus, in Example 2c, the intervallic 
repetition is the pattern marked by the solid brackets. Examples 2a and 2b 
contain no intervallic repetition; in Example 2a, for instance, the pattern of 
generic intervals within the first measure (−2 +4) is not repeated in the sec-
ond measure (−2 +5). Again, this restriction causes many valid patterns to be 
missed (and may cause some dubious ones to be found), but it does not appear 
to introduce any systematic bias that would compromise the tests presented 
below.

To summarize: an intervallic repetition, by the current definition, con-
sists of a pattern of generic intervals, including all the notes of a single measure, that is 
exactly repeated in the following measure. (Only patterns with at least two intervals—
that is, three or more notes—are included; the reason for this will become 
clear below. The interval to the first note of each measure is disregarded, as 
this is not, strictly speaking, “within the measure.”) I now turn to the first of 
the two claims above: when intervals are altered in a repeated pattern, they 
will tend to be larger in the second instance of the pattern than in the first. 
Define an intervallic near-repetition to be the same as an intervallic repetition 
except that exactly one of the generic intervals differs between the two in- 
stances, though it must be in the same direction in both cases.9 Thus the 
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10  In cases where a pattern occurs more than twice in 
succession, every pair of adjacent measures is counted; 
thus Example 1d contains a near-repetition between mm. 1 
and 2, and another between mm. 2 and 3.

11  This seems like a reasonable simplification. Degrees 
within the scale are overwhelmingly likely to be spelled in 
the diatonic way; one is very unlikely to see degrees such 
as ♯7 (e.g., B♯ in the context of C major) or ♭4. Other neutral 

scale degrees may have multiple possible tonal interpreta-
tions (e.g., ♯1 vs. ♭2), but in that case both are chromatic. 
Even for the purpose of identifying the scale degree prob-
ability of notes, as I do below, representing them by neutral 
scale degrees should give similar results to representing 
them by tonal scale degrees; it may somewhat overstate 
the probability of chromatic notes, as it effectively sums 
together the probabilities of different tonal interpretations.

themes in Examples 1b and 1d contain intervallic near-repetitions; Examples 
1a, 1c, and 1e do not, because the repetition distance of the pattern is not one 
measure.10 The claim is then that, in cases of intervallic near-repetition, the 
differing interval will tend to be larger (in generic interval size) in the second 
instance of the pattern than in the first. This was examined in the B&M cor-
pus. I identified 676 cases of intervallic near-repetitions; in 391 of those cases 
(57.8 percent), the second interval was larger than the first. This differs sig-
nificantly from the 50/50 distribution that would be expected if larger and 
smaller second intervals were equally common (χ2(1) = 16.3, p < .0001). A 
paired t-test across near-repetitions showed also that the differing interval 
was significantly larger in second instances than in first instances (mean 
generic size of differing interval size for first instances = 2.43, for second 
intervals = 2.72; t(675) = −3.06, p < .005).

The second claim made earlier was that the second instance of a re- 
peated intervallic pattern is more likely than the first to contain chromatic 
notes—that is, notes outside the scale. The term chromatic is problematic in 
the case of minor mode, since the “scale” is ill-defined. To avoid this issue, we 
consider only melodies in major keys, where the distinction between diatonic 
(i.e., within-the-scale) and chromatic degrees is clear-cut. (The B&M corpus 
identifies the key of each theme—which is not necessarily the main key of the 
piece—allowing the scale degree of each note to be identified.) For simplic-
ity, we classify scale degrees into twelve “neutral” categories, not distinguishing 
between, for example, ♯4 and ♭5.11 Once again we test the prediction using the 
B&M corpus, this time examining intervallic repetitions rather than near-
repetitions. Of the 1,046 intervallic repetitions in the corpus, in 122 cases the 
two instances of the pattern differ in the number of chromatic notes; of these, 
74 have more chromatic notes in the second pattern instance (60.7 percent), 
significantly different from an even split (χ2(1) = 5.12, p < .05). A paired t-test 
on these cases shows that second pattern instances have significantly more 
chromatic notes than first instances (mean number of chromatic notes for 
first instances = 0.28, for second instances = 0.34; t(121) = −2.79, p < .01).

A more general way of framing the prediction about chromaticism 
would be to say that the second instance of a pattern will tend to contain less 
probable scale degrees than the first instance. This formulation of the pre-
diction avoids an all-or-nothing distinction between diatonic and chromatic 
degrees, thus allowing the inclusion of themes in minor keys. The B&M cor-

Journal of Music Theory

Published by Duke University Press



165David Temperley    Information Flow and Repetition

pus can be used to count the frequency of each scale degree, that is, pitch 
classes in relation to the tonic. Representing these frequencies as proportions 
of the total produces “key profiles” for major and minor keys, as shown in 
Figure 2; these are very similar to key profiles that have been proposed else-
where, based on experimental work (Krumhansl 1990) and counts from 
other corpora (Temperley 2007). As expected, diatonic degrees have much 
higher probabilities than chromatic ones, and degrees of the tonic triad are 
somewhat more frequent than other diatonic degrees. The probability of a 
series of scale degrees can then be calculated as the product of their key-
profile probabilities. To avoid the very small numbers that result from this, 
we take the logs of the probabilities; averaging these across the notes in a 
measure produces a mean log scale degree probability (MLSP) for each measure. 
The prediction is that the second pattern instance in an intervallic repetition 
will tend to have a lower MLSP than the first. (In this case we exclude cases 
in which the two pattern instances contain exactly the same sequence of scale 
degrees; in that case their MLSPs would be equal.) Testing the prediction on 
intervallic repetitions in the B&M corpus shows that the second instance has 
a lower MLSP in 496 of 879 cases, or 54.6 percent, significantly different from 
an even distribution (χ2(1) = 14.28, p < .001); a paired t-test shows that the 
MLSP of second instances is significantly lower than that of first instances 
(mean of first instances = −2.126, of second instances = −2.185; t(878) = 3.76, 
p < .0001). While this result undoubtedly reflects the higher level of chro-
maticism in second instances, it may also reflect distinctions between scale 
tones and, in particular, between tonic-triad degrees and other diatonic 
degrees. In Example 2c, while all notes of both pattern instances are within 
the scale, the second instance of the pattern has lower scale degree probability, 

Figure 2.  Key profiles from the Barlow and Morgenstern corpus, showing the distribution of 

scale degrees for major and minor keys
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12  This was only done for mm. 1–8, since beyond that 
the counts of measures were considered too small for the 
mean MLSP values to be reliable; only intervallic repeti-
tions entirely within that span of measures were included 
in the test.

probably because it contains only two tonic-triad notes whereas the first 
instance contains four. This is not a problem for the theory, which simply 
predicts that second pattern instances will have less probable scale degrees 
than the first, whether the distinction is between chromatic and diatonic 
degrees or between more or less probable diatonic degrees.

Before continuing, we should consider a possible alternative explana-
tion for the results presented above. In general, it seems likely that the pro-
portion of chromatic notes in a theme (defined as notes outside the scale of 
the main key of the theme) will tend to increase as it goes on. Some themes 
may actually modulate (though it appears that very few of the B&M themes 
do so within the portion included in the corpus); others may include applied 
chords and other sources of chromaticism that seem unlikely to occur at 
the very beginning of a theme. An investigation of this suggests that, indeed, 
scale degree probability does decrease slightly as themes continue; the aver-
age decrease in log scale degree probability from one measure to the next is 
.038 (this is just short of statistical significance: r = −.56, p = .07). To control 
for this, the test reported above was repeated, but with a difference: the mean 
MLSP for all measures in each position was calculated (the mean MLSP for 
m. 1, for m. 2, etc.), and, for each pattern instance, the mean for that measure 
position was subtracted from the MLSP.12 The adjusted MLSP for second 
instances remained lower than for first instances, though the difference was 
somewhat reduced (first = −0.014, second = −0.041), and this remained sig-
nificant (t(877) = 1.68, p < .05). Thus the general increase in chromaticism as 
themes continue appears to contribute to the difference between first and 
second pattern instances but does not entirely explain it. The same issue was 
investigated with interval size; in this case, the mean interval size does not 
generally increase as melodies go on (it actually decreases very slightly), so it 
seems clear that that does not explain the greater interval size of second ver-
sus first pattern instances.

A perceptual model

The task now is to explain the phenomena observed above. As stated in the 
first section, the argument hinges on the idea of uniform information flow: 
the high contextual probability of intervallic repetitions should be balanced 
by a reduction in their schematic probability, which is accomplished by expand-
ing their intervals and adding chromaticism. But this leaves open the ques-
tion of how schematic and contextual probabilities are calculated and com-
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bined by the listener in evaluating the overall probabilities of events. In what 
follows I propose a model of music perception that addresses this question. 
Two caveats: First, my intent here is not to model the precise quantitative 
results obtained in the last section but simply to show, in a general way, how 
the observed qualitative relationships among repetition, interval size, and 
chromaticism might be predicted. Second, the model is extremely oversim-
plified, in that it neglects many factors that undoubtedly affect melodic per-
ception; despite this (as I show below), it is highly effective, both in modeling 
corpus data and in predicting perceptual judgments.

Let us begin with a simplified version of the model that considers just 
two factors: (1) generic melodic intervals and (2) scale degrees. It is well known 
that some intervals are more common than others in common-practice music 
and, in particular, that there is a preference for small intervals. Many theory 
textbooks (e.g., part-writing and counterpoint texts) express this principle 
explicitly, for example, recommending a preponderance of stepwise motion 
with only occasional leaps (Gauldin 1985, 17; Aldwell and Schachter 2003, 
69). Corpus research has confirmed the preference for small and, in particu-
lar, stepwise intervals in a variety of musical idioms (Von Hippel 2000; Huron 
2006). This principle has been found to influence perception as well, and in 
particular, melodic expectation, where it is often known as “pitch proximity”—
the tendency for a melodic note to be followed by another one that is close in 
pitch. Virtually every model of melodic expectation incorporates this prin-
ciple in some form (e.g., Narmour 1990; Schellenberg 1997; Lerdahl 2001; 
Larson 2004). The distribution of generic intervals over the entire B&M cor-
pus is shown in Figure 3. With very few exceptions, the frequency of intervals 
decreases monotonically as they increase in size. The primary exceptions are 

Figure 3.  Distribution of generic melodic intervals in the Barlow and Morgenstern corpus
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that the unison is somewhat less common than the ascending or descend-
ing step, and the octave is somewhat more common than the seventh, both 
ascending and descending. Apart from these caveats, the distribution can be 
modeled fairly closely with a normal distribution or “bell curve,” and I will do 
so here.

Figure 3 identifies intervals only by their generic categories—not dis-
tinguishing, for example, between major and minor thirds. Introducing a 
second factor, scale degree, allows these finer distinctions. The idea that 
some scale degrees are more frequent than others is, again, uncontroversial, 
as both a fact about compositional practice and a factor in music perception. 
Carol Krumhansl’s classic key profiles, based on experiments in which sub-
jects judged the stability or “fit” of pitches in a tonal context, consistently 
reveal lower values for chromatic pitches; as Krumhansl (1990, 69–70) 
observes, listeners’ internal key profiles most likely reflect the distribution 
of scale degrees in music they have heard. Most melodic expectation models 
also embody a preference for some scale degrees over others (Schellenberg 
1997; Lerdahl 2001; Larson 2004). Scale degree distributions for the B&M 
corpus are presented in Figure 2; these will be used in the perceptual model 
as well.

What is needed now is a way of combining interval probabilities with 
scale degree probabilities to assign a probability to each note in a melody. 
In earlier work I have proposed a solution to this problem (Temperley 2007). 
Suppose we are in a C major context and the previous note in the melody is 
D4. The generic interval distribution (approximated with a normal distribu-
tion, as explained earlier) assigns an “interval probability” to each possible 
subsequent note; this is shown in Figure 4a for a two-octave range centered 
around D4. (It is an interesting question whether two specific intervals of the 
same generic category—for example, major and minor third—should be 
given the same probabilities at this stage, or different probabilities, reflecting 
their different chromatic sizes; I have chosen the latter course, as reflected in 
the figure.) We also take the appropriate scale degree distribution (the major 
one in this case) and duplicate it in each octave, as shown in Figure 4b. We 
then multiply the scale degree distribution with the interval distribution, 
normalizing the values of the combined distribution to sum to 1 (making it 
a well-defined probability distribution), as shown in Figure 4c. (The figure 
shows log probabilities rather than probabilities, since this more clearly rep-
resents distinctions between very small probability values.) In effect, the com-
bined distribution gives highest probability to pitches that are both diatonic 
in the current key and close in pitch to the previous note—specifically, in the 
current case, C4, D4, and E4. Figure 4c also shows the actual distribution (log 
probabilities) of pitches in the B&M corpus for all major-key contexts fol
lowing a pitch of scale degree 2. (The model treats all such contexts as the 
same.) Overall, the fit of the model to the data is quite close. Perhaps the most 

Journal of Music Theory

Published by Duke University Press



169David Temperley    Information Flow and Repetition

Figure 4.  (a) A distribution of chromatic intervals, assuming a previous pitch of D4.  

(b) The major-key scale degree distribution of the B&M corpus, assuming a key of C major, 

duplicated over two octaves. (c) The solid line (“model”) shows the normalized product of 

a and b (log probabilities); the dotted line (“corpus”) shows the distribution of pitches in 

major-key themes in the B&M corpus following scale degree 2 (assumed here to be D4 in 

C major).
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13  The distribution of chromatic intervals across all con-
texts (not shown here) shows a roughly bell-shaped but 
uneven distribution; for example, there are many more 
major seconds than minor seconds. Similar results have 
been found in other corpora (Von Hippel 2000; Huron 2006, 

74). Undoubtedly, this unevenness is due to the well-known 
fact that intervals differ in frequency within the diatonic 
scale; for example, there are five major seconds but only 
two minor seconds.

notable mismatch is the unison interval, whose probability is somewhat over-
estimated by the model.13

In Temperley 2007 I presented a model of melodic perception very sim-
ilar to the one proposed here. (The main difference is that the earlier model 
also included a preference for each note to stay close to the center of the 
melody’s overall range; this had a fairly small effect on the model’s judg-
ments.) The earlier model’s predictions were compared with data taken from 
a melodic expectation experiment by Lola Cuddy and Carol Lunney (1995), 
in which listeners judged the expectedness of a note (on a scale of 1 to 7) fol-
lowing a two-note melodic context. (Since the key was not given in that case, 
the model had to guess the key from the context, just as listeners presumably 
did.) Experimental data (averaged over all subjects) and the model’s predic-
tions are shown in Figure 5 for a single context, an ascending major second. 
Over all contexts, the model yielded an excellent fit to listeners’ judgments, 
with a correlation of .87. Thus the combination of interval size and scale 
degree seems to go a long way toward modeling both actual note probabili-
ties (as reflected in compositional practice) and subjective probabilities (as 
reflected in expectation judgments).

We now turn to the problem of incorporating repetition into the model. 
We do this by modifying the interval distribution. The idea is that an interval 
that generically matches the interval at a previous metrically parallel position 

Figure 5.  Data from a melodic expectation experiment (Cuddy and Lunney 1995) and a 

model’s predictions. The data show judgments of expectedness (on a scale of 1 to 7) for 

pitches following a context of an ascending major second. Pitches are labeled in relation to 

the second pitch of the context; for example, −1 represents a descending minor second from 

the second pitch of the context. From Temperley 2007.
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should be given an increase in probability—I will call this the “repetition 
boost.” One complication is that the interval distribution, as defined in Fig-
ure 4a, represents specific intervals, but the repetition boost depends on 
generic intervals: a third at the earlier position should raise the probability 
of any third at the later position. Here we simplify things by considering only 
the most common versions of each generic interval, that is, the ones that 
occur between notes of the diatonic scale: unison / m2 / M2 / m3 / M3 / 
P4 / A4, and their inverted and compound forms. Consider the melody in 
Example 4, and the probability distribution for the fourth note of the second 
measure. (Once again, we consider only parallelisms at a distance of one 
measure.) The previous note is scale degree 2; thus, without repetition, the 
interval distribution and combined distribution would be as shown in Fig-
ure 4, a and c. Given the repetition factor, the metrically parallel note in the 
previous measure, approached by an ascending third, would give rise to a 
repetition boost for every note in the interval distribution representing an 
ascending third—either m3 (F4) or M3 (F♯4), creating the distribution in 
Figure 6a. (A rough calculation—based on the values in Table 2—suggests 
that this boost should be about 0.1, but the exact value is not important here.) 
The adjusted interval distribution is then multiplied with the scale degree 
profile, creating the combined distribution shown in Figure 6b; the scale 
degree profile greatly reduces the value for F♯4 (as it is scale degree ♯4—not 
part of the scale), leaving F4 as the most likely note.

Imagine a series of notes that exactly repeated the generic intervals of 
the previous measure and remained entirely within the scale—for instance, 
Example 4 with F4 as the final note. In this case, every note would get the 
repetition boost, and all the note probabilities would be quite high. Recall that 
the UID theory states that information flow—information per unit time—
should maintain a fairly constant rate, close to the optimal rate for human 
communication. While we do not know exactly what that optimal rate is, it 
seems reasonable to assume, if the theory has any validity, that the average 
information flow in musical themes is fairly close to it. One can imagine that, 
given the multiple repetition boosts, a melodic segment consisting entirely 
of repeated generic intervals and diatonic scale degrees might be somewhat 
below this optimal rate of information flow—or, in more informal terms, a 
bit dull and predictable. The composer might well decide to spice things up by 
changing one of the generic intervals; in this case, it would make sense to do 

Example 4.  A hypothetical melodic 

phrase with an indeterminate final 

note
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so in a way that greatly increased the information content of the segment—that 
is to say, by choosing a relatively large interval (perhaps moving to A4 in 
Example 4 instead of the expected F4). Alternatively, the composer could 
maintain the same generic interval pattern but add chromatic inflections to 
one or more of the notes (perhaps moving to F♯ in Example 4 rather than F), 
thus increasing the information content in another way. In this way, the cur-
rent model explains the tendency of common-practice composers to alter 
repeated patterns in ways that lower their schematic probability.

Discussion

In common-practice themes, in cases where a generic intervallic pattern is 
repeated with slight alterations from one measure to the next, there is a sig-
nificant tendency for the second instance of the pattern to contain larger 
intervals and more chromaticism than the first instance. I have argued that 
this tendency can be explained in terms of the theory of UID. There is a high 
probability that the interval at one point in a measure will repeat the interval 

Figure 6.  (a) A modified interval distribution, assuming a previous note of D4, including a 

“repetition boost” for ascending thirds; (b) the combined distribution resulting from the 

product of Figures 6a and 4b
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from the parallel point in the previous measure. Given a measure consisting 
entirely of such repeated intervals, the information flow might be undesir-
ably low. This might well prompt the composer to alter the second instance 
of the pattern in some way that lowers its schematic probability, such as 
increasing the size of one of the intervals or adding a chromatic inflection to 
one or more of the notes. This provides an explanation for why the second 
instance of an intervallic pattern tends to have larger intervals and more 
chromaticism than the first.

I suggested at the outset that the claims being made about composi-
tional practice are not laws but rather tendencies; the results presented above 
certainly bear this out. A great many themes in the corpus show patterns 
opposite to the ones predicted. With regard to interval size, in 285 of 676 
near-repetitions, the changed interval is smaller in the second pattern instance 
than in the first, contrary to our prediction. A further point might be made 
as well: according to the current model (and disregarding chromaticism for 
the moment), it seems that an intervallic repetition will generally be more 
probable than any kind of near-repetition, even one in which the changed 
interval is smaller in the second instance than in the first. (This is due to the 
repetition boost; in Figure 6b, for example, the +m3 interval [going to F4] is 
more probable than the smaller +M2 [going to E4].) Thus, by the current rea-
soning, intervallic repetitions should be less desirable than near-repetitions, 
and therefore should be less common. But in fact, repetitions are more com-
mon than near-repetitions: there are 1,442 repetitions in the corpus but only 
676 near-repetitions. Is this not a problem for the current argument?

Two points can be made in response. First of all, it is clear that the 
regulation of information flow is only one of the factors governing the con-
struction of melodies; many other considerations also come into play. A mel-
ody must convey, or at least be compatible with, an underlying harmonic 
progression (I will return to this point). It may also participate in long-range 
linear processes and conventional schematic patterns. In Example 2c, it is 
difficult to think of an altered repetition of the first measure that would con-
vey the underlying ii chord as clearly and elegantly as the unaltered repeti-
tion in the second measure. Similarly, the theme in Example 5a (containing 
a repeated one-measure pattern, and practically a two-measure pattern as 
well, except for the “missing” first note) conveys a 1–7–3–4 schema, a com-
mon strategy for opening themes (Gjerdingen 1987); any chromaticism or 
altered intervals might have hindered the identification of this schema. 
Apparently, such compositional imperatives sometimes—indeed, very often—
override the preference for smooth information flow.

A second point, perhaps more interesting, is that there may be cases 
where an exact repetition is preferable from the point of view of information 
flow. I have assumed that the low information of some elements (i.e., notes) in 
a melody may be counterbalanced by the high information of other elements. 
But suppose we extend this reasoning to a higher level, defining “elements” 
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14  The motive is slightly altered rhythmically: the first note 
is changed from an eighth note to a sixteenth note. In gen-
eral, the phenomena posited here are particularly evident in 
Brahms’s music: there are nearly as many near-repetitions, 
66, as repetitions, 72, and among near-repetitions, the sec-
ond instance contains the larger interval in 49 cases (74.2 
percent).

as larger melodic segments rather than as notes. It follows that, if a theme 
begins with a melodic segment that is particularly high in information content, 
UID would favor a following segment with very low information—perhaps 
an unaltered repetition of the first segment. Consider the second theme to 
the first movement of Brahms’s Piano Quintet (Example 5b). The descending 
octave at the beginning of this motive is highly unusual and, no doubt, rather 
difficult to process; it is perhaps appropriate, then, that Brahms repeats the 
intervallic pattern in an unaltered form rather than altering it, as he often 
does—giving the motive a chance to sink in, one might say.14

If, as I have suggested, harmony can sometimes explain cases that go 
against the theory’s predictions, it may also offer an alternative explanation 
for certain cases that the theory does predict. Return once more to Exam-
ple 1c: I argued that the larger interval in the second pattern instance (a sixth 
instead of a fourth) can be explained as a means of increasing information 
content. But one might also note that repeating the fourth from the first pat-
tern instance, yielding E4–A4, would conflict with the underlying I–V–V–I 
harmonic progression—a standard progression for the first four measures 
of a classical-period theme; the interval that is actually used, E4–C5, fits that 
progression. In this case, then, the altered repetition might well be explained 
in purely harmonic terms. In general, the assumption that melodies are con-
structed based purely on considerations of scale degree and interval size—as 
assumed by the model I present here—is, no doubt, a gross oversimplifica-
tion of the compositional process. I would also suggest, however, that a view 

Example 5.  (a) Beethoven, Quartet op. 131, IV, mm. 1–4; (b) Brahms, Piano Quintet op. 34, I, 

mm. 35–37; (c) Beethoven, Sonata op. 7, III, mm. 1–6
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of composition in which melodies are constructed to fit a predetermined 
harmonic progression is oversimplified as well. No doubt, both harmonic 
and melodic considerations operate simultaneously in the construction of 
themes, in a complex interactive process, and it seems reasonable to suggest 
that the shaping of information flow is one of the many considerations that 
affect this process.

While I have been focusing on harmony as a compositional factor 
independent of information flow, it may also affect information flow itself. 
It seems likely that the harmonic structure of a melody—whether explicit or 
implied—influences our expectations of what note will come next, thus 
affecting the informational contour of the melody. Consider Example 5c, 
containing a near-repetition between mm. 4 and 5. Measure 5 contains a 
smaller interval than m. 4; thus one could say that it increases the schematic 
probability of the pattern. But from a harmonic perspective, m. 5 could well 
be considered to be lower in probability than m. 4—in particular, because it 
contains a change of harmony on the second beat of the measure (from IV 
to I—confirmed by the accompaniment), the first time this has occurred in 
the piece. Similarly, in Example 1e, the higher information of the second 
five-measure phrase in relation to the first is due not only to its chromaticism 
but also to its dramatic harmonic “leaps”—from ii to IV/♭VII in mm. 6–7 and 
from a tonicized ♭VII to V7 in mm. 8–9. A more sophisticated model of melodic 
information flow would incorporate such harmonic considerations.

Quite apart from complicating factors such as harmony, this project 
could be extended in a number of ways. First of all, the UID theory points to 
several other possible predictions about the melodic parameters considered 
here—interval and scale degree. Analogous to the finding that low-probability 
words are pronounced more slowly, one might predict that notes approached 
by large intervals—being low in probability—would be longer than those fol-
lowing short intervals, and that chromatic notes would be longer than dia-
tonic ones: that is, we would predict a positive correlation between interval 
size and duration, and a negative correlation between scale degree probabil-
ity and duration. The problem with these predictions is that they are seriously 
confounded with other well-known musical principles. Since chromatic notes 
are generally ornamental in function, we might expect that they would nor-
mally be short. Indeed, the correlation between scale degree probability and 
length, across all notes in the corpus, is positive (r = .31), counter to the UID 
prediction. This does not rule out the possibility that UID exerts some pres-
sure for chromatic notes to be long, but this pressure appears to be weak and 
outweighed by opposing forces. Possible confounds also arise with regard to 
interval size. As just noted, chromatic notes tend to be short; they are also (at 
least according to conventional theory) generally approached by stepwise 
motion. For this reason, a correlation between the length of a note and the 
size of the interval approaching it might arise indirectly. In this case, the alter-
native account makes the same prediction as the UID account: it predicts that 
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notes approached by larger intervals will tend to be long. Across all notes of 
the corpus, there is indeed a positive correlation between length and interval 
size (r = .69), but it is difficult to know which of our two explanations is the 
real reason for it.

The treatment of melodic repetition in this study could also be further 
developed. Ideally, the “repetition boost”—the increase in probability for an 
interval that repeats a preceding one—would reflect not only repetition dis-
tances of one measure but other metrically parallel distances as well; at any 
given point, several generic intervals might be “boosted” due to their paral-
lelism with intervals at different preceding points. One could also introduce 
distinctions between different pitch levels of repetition; it seems likely that 
repetition at the original pitch level (i.e., repetition of the pitches as well as 
the intervals) is more probable than at other levels, but this has not yet been 
systematically examined. It seems likely, also, that there is an “inertia” to 
repetition—that is, a single repeated interval increases the probability that 
the next one will be a repetition as well. (In Example 4, for instance, the fact 
that the first two intervals of the second measure repeat those of the first 
measure increases the probability that the third interval will also do so.) 
Such a factor would presumably increase the probability of multi-interval rep-
etitions of the kind discussed here.

One could also expand the concept of altered repetition to include 
rhythmic alteration. The question of how to assess the probability of a rhyth-
mic pattern is a difficult issue that I have explored elsewhere (see Temperley 
2010). Apart from the probability of the rhythm itself, adding notes to a pat-
tern will generally lower its probability. (There are many more eight-note 
patterns than four-note patterns, so there is less probability mass available for 
each one.) Thus the UID viewpoint predicts that a rhythmic alteration of a 
melodic pattern will usually add notes rather than remove them—an intui-
tively plausible prediction, in my view, but not yet tested.

From a broad perspective, this study highlights the complex, interactive 
relationship between composition and perception. Perception is shaped by 
composition, in that listeners’ subjective probabilities and expectations are 
conditioned by the music they hear. But influence also flows the other way: 
composers are sensitive to listeners’ capacities and preferences, and this in 
turn shapes their behavior. As a general statement about music composition, 
this may seem rather obvious. But to formulate it as a concrete, testable pre-
diction is not such a simple matter, as I hope this study has shown. I have 
suggested that the theory of uniform information density offers a useful way 
of approaching this issue. UID provides a framework for formalizing the pre-
dictions made here regarding the relationships among interval size, chromat-
icism, and repetition; no doubt it could be applied to other musical questions 
as well. The UID theory also suggests that phenomena of this kind may not 
be unique to music but may connect in interesting ways with other domains 
(such as language) and with general principles of perception and cognition.
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