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Abstract

This article presents a probabilistic model of polyphonic
music analysis. Taking a note pattern as input, the model
combines three aspects of symbolic music analysis—
metrical analysis, harmonic analysis, and stream
segregation—into a single process, allowing it to capture
the complex interactions between these structures. The
model also yields an estimate of the probability of the
note pattern itself; this has implications for the modelling
of music transcription. I begin by describing the
generative process that is assumed and the analytical
process that is used to infer metrical, harmonic, and
stream structures from a note pattern. I then present
some tests of the model on metrical analysis and
harmonic analysis, and discuss ongoing work to integrate
the model into a transcription system.

1. Introduction

In the last decade, the field of computational music
research has seen an explosion of work using probabil-
istic methods. This work includes models of meter
induction (Cemgil et al., 2000a,b; Raphael, 2002; Cemgil
& Kappen, 2003), key induction and harmonic analysis
(Raphael & Stoddard, 2004; Temperley, 2004), voice
separation (Kirlin & Utgoff, 2005), style classification
(Chai & Vercoe, 2001; de la Higuera et al., 2005),
expectation (Pearce & Wiggins, 2006), and transcription
(Kashino et al., 1998; Cemgil et al., 2005; Davy, 2006).
These studies have explored a variety of ways of applying
probabilistic techniques to musical problems and have
yielded impressive achievements. For the most part, how-
ever, this research has been highly compartmentalized—
focusing on individual problems such as meter induction,

harmonic analysis, and transcription in isolation with-
out addressing the connections between these pro-
blems. One of the great virtues of the probabilistic
approach is that it provides a framework for integrat-
ing multiple interacting processes and representations
into a single unified model. This not only has the
obvious benefits of parsimony and generality—solving
several problems at once—but also holds out the
promise of improving performance on each individual
problem, in relation to what can be achieved by
addressing them separately.

In this article I present a unified probabilistic model
of polyphonic music analysis. The model is unified in
two senses. First of all, it integrates three aspects of
symbolic music analysis—meter analysis, harmonic
analysis, and stream segregation—that in previous
work have only been addressed individually. Secondly,
at a higher level, the model unifies the general problem
of structural analysis with the problem of estimating
the probabilities of note patterns—a problem that, in
turn, has implications for the modelling of music
transcription. The model builds on earlier work: in
Temperley (2007), I presented a model which analyses
key and meter in monophonic input and estimates the
probabilities of monophonic note patterns. The current
model extends this previous research by accommodat-
ing polyphonic input, incorporating harmonic and
stream analysis, and providing a workable component
for a transcription system. The model is intended
primarily for traditional Western art music (‘classical’
music), but may be applicable to other styles as well.1
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1The source code for the implementation of the model, which is
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The input to the model is a MIDI or ‘piano-roll’
representation—a list of notes indicating the on-time and
off-time (in milliseconds) and pitch of each note. The
model then derives three kinds of musical structure: me-
trical structure, harmonic structure, and stream struc-
ture. Following a widely used convention (Lerdahl &
Jackendoff, 1983), I define a metrical structure as a
framework of levels of beats, as shown at the left of
Figure 1. Generally (at least in Western music), every
second or third beat at one level is retained at the next
level up; beats at each level tend to be roughly evenly
spaced, but not exactly so, at least in human perfor-
mance. A harmonic structure is a segmentation of a piece
into time-spans labelled with chords; for our purposes
the labels are simply roots, though they could also carry
more specific information, e.g. chord quality (major
versus minor) or relationship to the key (e.g. ‘I of C
major’). Finally, a stream structure is a grouping of the
notes of a polyphonic texture into melodic lines (also
called streams or voices). Following previous research on
stream separation (Temperley, 2001; Kirlin & Utgoff,
2005; Cambouropoulos, 2008), I assume that the number
of active streams within a piece may fluctuate; thus
streams are allowed to begin and end within the piece.
Figure 1 shows the opening of a Bach minuet; below the
music notation, the figure shows the piano-roll repre-
sentation used as input as well as the metrical structure,
harmonic structure, and stream structure.

Before proceeding, it may be helpful to elaborate on a
point made in the first paragraph—that addressing
problems of musical information-processing in a unified
fashion can yield better results than addressing them
individually. Prior research on metrical, harmonic, and
stream analysis has shown that these three problems are
very intimately related. Regarding the interaction of
meter and harmony, it can be seen from almost any
harmonic analysis that changes of harmony tend to occur
on relatively strong beats: generally at strong tactus
beats, and very rarely below the level of the tactus. (The
tactus is an intermediate level in the metrical hierarchy,
usually corresponding to what is informally called the
‘beat’—most often the quarter-note.) Table 1 shows
some evidence on this point, gathered from the Kostka–
Payne corpus, a harmonically-annotated corpus of
classical excerpts which is discussed further below. If
we define the tactus level as level 2, the level immediately
above as level 3, and the level below as level 1, changes
of harmony occur on about 71% of level 3 beats, 22% of
level 2 beats (which are not level 3 beats), and only 2% of
level 1 beats. Several models of harmonic analysis, such
as those of Maxwell (1992) and Temperley (2001), have
explicitly included metrical information in the input.
[Others, such as Raphael and Stoddard (2004), have
finessed the problem by limiting the possible points of
harmonic change to a high metrical level such as bars or
half-bars.] But the influence also goes the other way:

harmony also affects meter. In Temperley (2001), in
discussing the metrical analysis model presented there, I
noted that many of the model’s errors were due to its
ignorance of harmonic structure, specifically the fact
(noted above) that harmonic changes rarely occur on
very weak beats. From a probabilistic viewpoint, this
two-way interaction makes sense: if a strong beat
indicates a high probability of a harmonic change, it is
hardly surprising that the clear presence of a harmonic
change would suggest a strong beat.

The interaction of stream structure with meter and
harmony is perhaps less obvious, but nonetheless
important. An example is seen in the effect of note
length on metrical analysis. It is well known that there is
a tendency for long notes to coincide with strong beats;
most metrical analysis models define the length of a note
as its ‘inter-onset-interval’ (IOI), the interval between the
note’s onset and the onset of the following note (see e.g.
Povel & Essens, 1985; Rosenthal, 1992). But as noted in
Temperley (2001), determining the IOI of a note in
polyphonic music is a non-trivial task. In Figure 1, the
IOI of the left-hand note of bar 2 is just one quarter-note,
as the next note occurs on the second beat of the bar (the
G4 in the right-hand); but the perceived length of the
note is actually one bar. Intuitively, what seems to matter
is the IOI of a note in relation to the next note within the
same voice; obviously, this assumes knowledge of stream
structure. Similarly, a well-known principle of harmony
is that non-chord-tones (notes not part of the current
chord) tend to resolve by step; but this generally implies
resolution to another note within the same voice, which
again requires the grouping of notes into voices.

Elsewhere (Temperley, 2007) I have proposed a
distinction between ‘structural’ processes of music
cognition—those that involve inferring higher-level
structures from a pattern of notes, such as metrical,
harmonic, and stream structures—and ‘surface’ pro-
cesses, those that involve the identification and projec-
tion of the note pattern itself. Transcription—the
extraction of a polyphonic note pattern from an audio
signal—is a complex and difficult problem that has
received much attention in recent years [see Klapuri and
Davy (2006) for a survey of work in this area]. Other
important surface processes include expectation, the
projection of future notes based on a prior context
(Schellenberg, 1997; Jones et al., 2002), and error-
detection, the identification and correction of erroneous
notes. For the most part, these surface processes have been
addressed in isolation from structural problems. But again,
structural and surface problems are very intimately related.
Here, a Bayesian probabilistic framework is particularly
helpful. In Bayesian terms, the problem of transcription is
one of identifying the most probable note pattern N given
the signal. According to Bayes’ rule,

PðNjSignalÞ / PðSignaljNÞPðNÞ: ð1Þ
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We can maximize the expression on the left by
maximizing the expression on the right; this involves
identifying the probability of the signal given a note
pattern, and also the probability of the note pattern
itself. With regard to the latter term, in evaluating the

probability of a note pattern, it stands to reason that we
bring to bear musical structures of the kind discussed
earlier. Roughly speaking, a probable note pattern is one
that implies and adheres to a clear metrical structure,
harmonic structure, and stream structure (among other

Fig. 1. Bach, Minuet from the Notebook for Anna Magdalena Bach, mm. 1–4. Below the score is the output of the polyphonic analysis
program. At left is the timepoint (in milliseconds) at which each lowest-level metrical segment begins. To the right of that is the
harmonic structure (showing the root of each segment), the metrical grid (showing four metrical levels), and a ‘piano-roll’
representation of the input, with notes grouped into two streams (labelled 1 and 2).
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things perhaps). As argued in Temperley (2007), a
Bayesian transcription system really requires that any
structural representations that affect P(N) be integrated
into a single generative model. That is to say: it makes no
sense to posit separate rhythmic, harmonic, and stream
segregation models that all assign probabilities to note
patterns; these structures must be combined in some way
to generate note patterns, and any workable model must
specify how this is done.

While some studies of transcription have recognized
the value of applying higher-level musical knowledge to
the problem (Kashino et al., 1998; Klapuri, 2004), little
concrete progress has been made in this direction. The
system that I present below, as well as inferring metrical/
harmonic/stream structures from a given note pattern,
also calculates the probabilities of note patterns and thus
could naturally be integrated into a transcription system;
some efforts in this direction are underway, as I discuss at
the end of the article.

Like most Bayesian probabilistic models, the current
model assumes a generative process—in this case, a
process that generates musical structures and then
generates note patterns from those structures. For the
analytical process, the usual Bayesian reasoning is then
used. Assume a given note pattern N; then for any
metrical structure M, harmonic structure H, and stream
structure S:

PðM;H;SjNÞ / PðNjM;H;SÞPðM;H;SÞ
¼ PðM;H;S;NÞ:

ð2Þ

The aim of the analytical process is to maximize the
expression on the left, which we do by maximizing the
expression on the right.

For transcription and other surface processes, we need
to know the probability of the note-pattern itself. Here
again, we use the usual probabilistic reasoning, repre-
senting P(N) as the sum of the joint probability of N with
all structures:

PðNÞ ¼
X

M;H;S

PðM;H;S;NÞ: ð3Þ

We begin by describing the generative process. We then
turn to the analytical process, and describe some tests of

the model’s analytical ability. Finally we consider the
transcription problem and discuss some further issues.

2. The generative process

The task of the generative process is to stochastically
generate a metrical structure, harmonic structure, and
stream structure in combination with a pattern of notes
(where each note has a pitch, on-time, and off-time). The
process also assigns a probability to this joint structure:
P(M, H, S, N). This expression is decomposed in the
following way:

PðM;H;S;NÞ ¼ PðNjM;H;SÞ $ PðHjMÞ
$ PðSjMÞ $ PðMÞ:

ð4Þ

These dependencies are represented in Figure 2. Essen-
tially, the model first generates a metrical structure; it
then generates harmonic and stream structures (these
structures are dependent on the meter but independent of
each other); finally, it generates the note pattern, which is
dependent on all three structural representations. We
assume a discrete timeline of points spaced 50 ms apart,
known as pips; note-onsets and offsets as well as
structural events (beats, changes of harmony, and stream
beginnings and endings) may only occur at pips.

The generation of the metrical structure is as shown in
Figure 3. It can be seen that the structure has four levels,
numbered 0 through 3 (where level 3 is the highest, i.e.
sparsest, level); level 2 (L2) is assumed to be the tactus
level. [This process and the resulting structure are very
similar to what was proposed for the monophonic meter-
finding model in Temperley (2007), the main difference
being that the current structure has four levels instead of
three.] The process begins by generating the tactus level.
The first tactus interval (a pair of adjacent tactus beats) is
generated using a distribution which favours intervals in

Fig. 2. The structure of the generative process.

Table 1. Harmonic changes at beats of different metrical levels
in the Kostka–Payne corpus.

Metrical level
(2¼ tactus)

% of beats with
changes of harmony

3 71.5
2 22.3
1 2.4

6 David Temperley
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the range of 600–800 ms. (The setting of specific
parameter values is described below.) Subsequent tactus
beats are then generated by a distribution conditional on
the previous tactus interval, favouring a tactus level that
is roughly regular, but allowing some fluctuation. At
each tactus beat, a decision is made as to whether to
generate another beat or to end the tactus level; in effect,
this determines the length of the piece. Next, decisions
are made as to whether level 3 should be duple (in which
case every second L3 beat is an L2 beat) or triple, and
whether L2 is duple or triple (determining whether tactus
intervals should be divided duply or triply). L1 is
assumed to be duple, given that in Western music a
triple division of the sub-tactus level is extremely rare.
Once these decisions are made, the exact placement of
each beat at levels 1 and 0 must be determined; for this,
distributions are used which favour a roughly equal
division of the higher-level beat interval but allow some
irregularity. Finally, the ‘phase’ of L3 must be chosen—
whether the first L2 beat is the first, second, or third beat
of a L3 beat interval. (The metrical grid is assumed to
begin and end on tactus beats.)

The harmonic structure is then generated. The task of
the generative process here is to segment the piece into
harmonic segments or ‘chord-spans’, each one labelled
with a root. An important simplification here is that
harmonic changes are allowed only on tactus beats. (As
shown in Table 1, it appears that only a very small
percentage of harmonic changes are on sub-tactus beats,
so excluding this possibility results in only a small loss of
accuracy.) Thus the model’s task is simply to choose a
root for each tactus interval. For the first tactus interval,
a root is chosen out of a uniform distribution. For each
subsequent interval, the model first decides whether to
continue the previous root or to change to a new root;
the probability of change is higher for L3 beats than L2
beats, reflecting the greater likelihood of chord changes

on stronger beats (see Table 1). If a new root is chosen,
there is a high probability of moving to a root that is a
perfect fifth above or below the previous one, reflecting
the well-known preference for root motion by fifths in
Western music; all other roots are assigned the same low
probability.

With regard to the stream structure, the task of the
generative process is simply to generate a set of streams,
each one spanning a certain portion of the piece. We
limit the possible beginning and ending points of streams
to tactus beats. (This constraint has no musical justifica-
tion, but is made simply to limit the space of possible
streams; as we will see, it does not imply that the first or
last note of a stream must be on a tactus beat.) At each
tactus beat, for each integer n there is a possibility of
generating n new streams; a Poisson distribution is used
here with an expected value of much less than 1. (For the
initial tactus beat, a Poisson distribution with an
expected value of 2 is used.) Once a stream is generated,
at each subsequent tactus beat, a decision is made
whether to continue the stream to the next beat or to end
the stream. Notice that streams in themselves are not
assigned to specific pitches or even to any pitch range.

Once the metrical, harmonic, and stream structures
are formed, a pattern of notes is then generated. This
process may be broken down into the generation of a
rhythmic pattern—a pattern of note-onsets and offsets—
and a pitch pattern, assigning a pitch to each note
generated. Regarding the note-onset pattern, for each
stream, at each pip within the stream, a choice is made as
to whether to generate a note-onset at that point. There
is an extremely low, but non-zero, probability of note-
onsets occurring at non-beat pips (this allows for notes
on very weak beats such as 32nd-note beats, and for
‘extrametrical’ notes such as grace notes). Regarding the
probability of onsets at beats, I use a novel method which
I call metrical anchoring [this was discussed but not

Fig. 3. The generative process for the metrical grid.
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implemented in Temperley (2007)]. In general, it is well
known that note-onsets are less likely on lower-level
beats than higher-level beats (Palmer & Krumhansl,
1990). But the idea of metrical anchoring is that the
probability of a note-onset at a beat depends on the
presence of notes at the surrounding higher-level beats.
Consider a weak eighth-note beat with stronger beats
on either side (see Figure 4). A note on such a beat is
extremely unlikely if there is no note on either side (we
call this an ‘unanchored’ note); it is only slightly more
likely if there is a note only on the previous beat (‘pre-
anchored’), much more likely if there is a note on the
following beat (‘post-anchored’), and again very likely if
there are notes on both beats (‘both-anchored’). (Figure
4 provides some statistical evidence on this matter.)
Thus the note-onset generation process proceeds in a
top-down manner. First decisions are made as to the
note status (onset or no onset) of beats at L2 and L3;
here each decision is made independent of context, with
the onset probability at L3 beats slightly higher than at
L2 beats. Then note decisions are made at L1 beats,
conditional on the note status of the neighbouring L2
beats; finally, note decisions are made at L0 beats
conditional on neighbouring L1 beats. (It is the
presence of neighbouring notes within the same stream
that matters here, thus capturing the interaction with
stream structure discussed earlier.) An attractive feature
of this approach is that it allows us to indirectly
incorporate the preference for longer notes on stronger
beats. A long note on a weak eighth-note beat—that is,
one with no note on the following quarter-note beat—
will either be ‘pre-anchored’ (if there is a note on the
previous quarter-note beat) or ‘unanchored’ (if there is
not), and both of these situations are assigned very low
probability.

After all note-onsets have been generated, an offset
time must be chosen for each note. We assume, first of

all, that the offset of each note must be no later than the
following note-onset within the stream (if any). Beyond
this, note-offsets present a difficult problem in the
modelling of rhythm. In general, we assume that the
correct metrical analysis of a piano-roll corresponds to
music notation; with regard to the note-onset pattern, the
analysis shown in Figure 1 corresponds to the correct
music notation and could be converted to it quite easily.
But with regard to note-offsets, notes are often played
somewhat ‘staccato’, with the offset much earlier than is
indicated by the notation, which makes the correct
notation difficult to infer. For example, it is often
difficult to decide whether to notate something as
‘quarter-note’ or ‘eighth-note followed by eighth-rest’.
In general, I would argue that notations of the latter type
are fairly rare; to put it another way, notes are generally
notated as ending on tactus beats unless another note-
onset intervenes. Thus we generate note-offsets as
follows. For each note-onset, at each subsequent tactus
beat T, we make a stochastic decision as to whether to
end the note at T or to extend it further; but if, when
considering T, we find that the onset of the next note in
the stream occurs before T, the note is ended at that
onset with probability 1. If the stream itself ends at T,
the note may continue past that point by the same
stochastic process.

Finally, a pitch is chosen for each note-onset
generated. This is conditional on the current harmony
and the previous pitch within the stream. We create a
‘proximity profile’, a normal distribution centred around
the previous pitch (Temperley, 2007); a ‘chord-profile’ is
also generated, which favours notes that are chord-tones
of the current root and also slightly favours notes within
the major and minor scales of the current root. (For the
initial note of each stream, the proximity profile is
replaced by an ‘initial pitch distribution’—a normal
distribution across a broad pitch range.) These two
profiles are multiplied, creating a distribution favouring
pitches that are both chord-tones and close in pitch to the
previous pitch; the distribution is normalized to sum to 1,
and these probabilities are used to choose the pitch for
each note.

Like any probabilistic model, the current model has
a number of parameters that must be set: for example,
the probability of a note-onset on a level 2 beat, the
probability of a stream ending at a tactus beat, and the
probability of a change of harmony. However, compared
to many probabilistic models, the number of parameters
is extremely small. The program contains exactly 50
probability distributions; all but 8 of these are binary
distributions, i.e. variables with just two values (thus
requiring only one parameter value). Where possible, the
variables were set using corpus data; most of the metrical
parameters were set using the Essen folksong corpus, a
large corpus of over 6000 European folk songs (Schaf-
frath, 1995). Other parameters were set using trial-and-

Fig. 4. Four rhythmic patterns (the third rest or note in each
pattern may be of any length). The numbers to the right show
the probability of a note-onset on the second (weak) beat, given
the context of the first and third beats. Data is from the Essen
Folksong Collection.
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error testing on a miscellaneous corpus of classical
pieces.

3. The analytical process

3.1 Overview

The aim of the analytical process is to find the most
probable metrical, harmonic, and stream structures for a
given note pattern. As noted in Equation 2 above, this
can be done by maximizing P(M, H, S, N). We define

fM;H;Sg% ¼ argmax½M;H;S'PðM;H;S;NÞ: ð5Þ

Given the generative procedure outlined above, with
specified parameters, we could quite easily calculate
P(M, H, S, N) for a given {M, H, S}. But how do we find
{M, H, S}*? The most straightforward method for this
would be to consider all possible combinations, as in the
pseudo-code algorithm below:

best P ¼ 0:0;
for each Mf
for each Hf
for each Sf
calculate PðM; H; S; NÞ;
if PðM;H;S;NÞ > best PÞf

fM;H;Sg% ¼ fM;H;Sg;
best P ¼ PðM;H;S;NÞ;

g
g

g
g

This procedure is not remotely tractable, even for one
component of the structure, let alone for all the
components combined. In what follows I explain various
techniques that are used for overcoming this search
problem. Some of the techniques are approximate while
others are exact.

Before beginning the analytical process, note-onsets
and offsets are quantized to pips. This is done in a
somewhat complex and context-sensitive way, to avoid
certain problems such as assigning the notes of a single
chord to different pips or creating notes of length zero.

3.2 The stream analysis process

The first stage of the search process concerns the stream
structure. It was noted earlier that stream structure seems
to interact with meter and harmony in the generation of
notes: in particular, the probability of a note on a beat
depends on the positions of other notes within the
stream. However, it appears also that the most probable
stream structure for a note pattern can be inferred with

reasonable accuracy without consideration of meter and
harmony. Roughly speaking, in choosing a stream
structure, we simply want to group notes into streams
such that the number of streams is fairly small, rests
within streams are few and short, and pitch intervals
within streams are small; none of these considerations
depend heavily on meter and harmony. This point was
made in Temperley (2001), where I argued that there are
relatively few cases where the inference of streams seems
to require knowledge of metrical and harmonic informa-
tion. Another way to put this is that, given arbitrary
stream structures S1 and S2, for any N,

PðM;H;S1;NÞ ( / PðM;H;S2;NÞ
½( /; means ‘approximately proportional to’'

ð6Þ

as M and H are varied. Thus if one wishes to find {M,
H, S}*, this can be done by assuming any metrical and
harmonic structure Mx and Hy and finding argmax[S]
P(Mx, Hy, S, N); by assumption, this will also be the S
of {M, H, S}*.

We thus proceed by assuming a fixed Mx and Hy and
then finding argmax[S] P(Mx, Hy, S, N). In so doing, it
seemed best to assume a very neutral or ‘flat’ Mx and Hy.
The metrical structure we assume is one in which there is
just one row of beats roughly 300 ms apart, so that note-
onsets are equally likely at all beats (these pseudo-beats
are adjusted to coincide with note-onsets and made more
dense if necessary so that every note-onset coincides with
a beat). With regard to harmony, we assume a
completely ‘flat’ harmonic profile so that all pitch-classes
are equally likely. Once the best S is found, this is then
assumed in searching for {M, H, S}*; at that point, the
generative process described earlier is used to calculate
P(M, H, S, N), factoring in probabilities for the stream
structure itself.

The problem at hand is to recover the most probable
stream structure given a note pattern.2 Given the
‘pseudo-metrical structure’ just described, the input to
the process can be viewed as a two-dimensional array of
squares Qc,p, with pseudo-beats as columns (c) and
pitches as rows (p), where Qc,p¼ onset if there is a note-
onset at the square, Qc,p¼ continuation if there is a note
continuation, and Qc,p¼ blank otherwise (see Figure 5).
(A note-offset that occurs part way through a square is
assumed for present purposes to occur at the end of the
square.) We can think of each stream as occupying
the squares of each note x that it contains, as well as all
the subsequent blank squares at the pitch of x until the
following note within the stream. Positing a stream at a
certain pitch then simply indicates that the stream

2The analytical procedure presented here has much in common
with the stream analysis model presented in Temperley (2001),
and could (roughly speaking) be regarded as a probabilistic
version of that model.
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contains the most recent note at that pitch. Thus it is
meaningless (and therefore illegal) for a stream to move
to a pitch with no onset (i.e. moving from Qc,p1 to Qcþ1,p2

when p2 6¼ p1 and Qcþ1,p2¼ blank or continuation; see
Figure 5(a)). It is also illegal for a stream to move away
from a note while that note is still in progress (i.e. moving
from Qc,p1 to Qcþ 1,p2 when p2 6¼ p1 and Qcþ1,p1¼ conti-
nuation; see Figure 5(b)). Every note-onset must be
contained in a stream. We also assume that a stream
never contains any squares before its first onset or after
its last one; thus streams may only begin and end at note-
onsets (Figures 5 (c) and (d)). (Since the probability of a
note-onset in a square is less than 0.5, this ‘minimal’
analysis is always more likely than other alternatives.)
Notice that, while a stream normally contains both the
onset and continuation squares of a note, it contains only
the onset square of its final note, not the continuation
squares.

Two further constraints are added on the stream
analysis process: (1) streams may never cross in pitch; (2)
two streams may never occupy the same square (Figure
5(e)). These constraints are not absolute in classical

music, but they are generally observed, and they greatly
simplify the search process. It may be noted, however,
that these constraints were not part of the generative
process presented earlier. In effect, it may be assumed
that stream structures with crossing and ‘colliding’
streams are sometimes generated but are then weeded
out by some kind of filtering process. The problem with
such a step is that the probabilistic model is now no
longer well defined. To elaborate this point, we can
imagine that the generative process begins with a space of
all possible structures and then recursively subdivides a
smaller and smaller region of the space as further
decisions are made. By filtering out certain structures,
we are in effect giving these regions a probability of zero,
but other regions are not being adjusted to compensate
for this, so the resulting total probability mass is less than
1. Really we should adjust for the loss of mass in some
way—for example, by slightly raising the probability of
all remaining structures. This does not appear to be a
serious problem, however. The main goal of the model is
simply to find the most probable structure, and some loss
of probability mass does not interfere with this task.3 It
simply means that the probabilities assigned to structures
are somewhat lower than they should be.

Let us now consider a situation where a column Cn

has certain onset, continuation, and blank squares, and a
certain ‘column analysis’; a column analysis simply
chooses certain squares as being occupied by streams.
There must be streams at all onset squares in Cn; there
may also be streams at other squares. We now wish to
continue this stream analysis to the next column Cnþ 1.
This involves choosing a column analysis for Cnþ 1 and
also deciding how the streams of Cnþ 1 will connect to
those at Cn. The possibilities are in fact quite limited, due
to the ‘well-formedness’ constraints mentioned above.
Within these constraints, the probabilities of various
options are defined as described earlier. Distributions
dictate the probabilities of beginning and ending streams.
The probability of a note-onset (or lack of one) is
factored in for every square that is contained within a
stream; the probability of a pitch interval is factored in at
each note-onset, conditional on the previous pitch level
of the stream. The probability of a continuation is
factored in for every square that could be a continuation.
(A square can only be a continuation if it contains no
onset, the previous square within the stream is at the
same pitch, and the previous square contains an onset or
continuation.) In this way we indirectly discourage

Fig. 5. Legal and illegal stream moves.

3Let us assume that the ‘correct’ model is the one in which the
probabilities of all structures are raised by the same proportion
to make up for the loss of mass in the way just suggested. The
most probable structure will be the same one with or without
this adjustment, as the probabilities of all structures are
adjusted equally.
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streams from continuing for long periods with no onsets
and discourage large pitch intervals within streams.

It can be seen that the legality and ‘goodness’ of a
certain transition and column analysis depend only the
preceding column analysis. The probability of beginning
and ending streams and the probability of note-onsets
and continuations within a stream can be calculated in a
purely local fashion; the probability of a note being a
certain pitch depends only on the interval to the pitch of
the stream at the previous column. Because of the local
fashion in which probabilities are calculated, a dynamic
programming approach may be used. At each column
Cn, for each possible column analysis, we find the best
global analysis of the piece so far ending with that
column analysis. Moving on to the next column, we need
only continue each previous ‘best-so-far’ analysis to each
possible column analysis at Cnþ 1, factoring in the best
transition between them; this allows us to find the new set
of best-so-far analyses at Cnþ 1, remembering the Cn

analysis that each one entails. At the end of the piece, we
choose the best of the best-so-far analyses in the final
column, and trace it back through the dynamic
programming table.

3.3 Metrical and harmonic analysis

We now turn to the search for the optimal metrical and
harmonic structure. The fact that the stream structure
has already been determined somewhat reduces the
search problem presented in Section 3.1, but it remains
formidable. One way that we simplify the problem is by
first considering only levels 0 through 2 of the metrical
structure. Level 3—which simply defines every second or
third level 2 beat as strong—is then determined on a
second pass.

The first stage of the metrical/harmonic analysis
process (the identification of the harmony and levels 0,
1, and 2 of the meter) depends on the concept of a
‘tactus-root combination’ (TRC): the combination of a
hypothetical tactus interval (two adjacent tactus beats)
and a root. The essential idea is that the probability of a
certain TRC depends only on the previous TRC, and the
probability of beats and notes within the TRC depends
only on the TRC. Viewed in this way, the metrical/
harmonic analysis process can be viewed as a rather
complex kind of hidden Markov model.

Suppose we have a hypothetical TRC and a pattern of
notes within it. (We include notes starting at the first
tactus beat of the interval, but not the second.) The notes
are also identified as belonging to certain streams. The
first step is to determine the most likely locations for L0
and L1 beats. This is essentially done as an exhaustive
search. For each possible L1 span, we find the best
location for the L0 beat; then, for each L2 span, we find
the best way of dividing it into L1 spans. The best duple
and triple metrical analyses of the L2 span must both be

found. A given lower-level beat analysis can be evaluated
by determining the probability of all note-onsets within
the span, given that beat pattern. Recall that the
probability of a note at an L1 or L0 beat depends on
the note status of the neighbouring higher-level beats.
Since we are looking at an entire (hypothetical) tactus
interval, we have this information, and can determine
what the probability of (for example) a note on an L1
beat would be if this TRC were actually used. The
probability of a note at an L2 beat is defined in a context-
free fashion, so this can easily be calculated as well. The
probability of note continuations is also calculated; recall
that each note in a stream has the option of continuing
into the next tactus interval as long as no other note in
the stream intervenes.4 As for the pitches, the probability
of each pitch depends only on the current root, which we
know, and the interval to the previous pitch within the
stream, which we also know. (The previous pitch is not
necessarily within the current TRC, but it does not
depend on the prior metrical-harmonic analysis.)

In assigning pitch probabilities, we also assign a
penalty (a reduction in probability) for any note that is
not part of the harmony and is not followed by stepwise
motion. This is, once again, an ad hoc move that is not
reflected in the generative process and results in some loss
of probability mass, but it seems justified by the resulting
improvement in performance.

We are now once again in a position to use dynamic
programming—an approach that has long been standard
in metrical and harmonic analysis models (Temperley,
1997, 2001; Cemgil et al., 2000b; Raphael & Stoddard,
2004). Suppose we are at a given TRCj,i,R (where R is the
root and j and i are the initial and final pips of the
interval, respectively) and we wish to find the ‘best-so-
far’ analysis of the piece ending with that TRC. More
precisely, if {M, H, S}i is a combination of partial
structures up to pip i, and Pi (M, H, S, N) is their joint
probability with the note pattern up to pip i, we wish to
find the {M, H, S}i entailing TRCj,i,R that maximizes
Pi(M, H, S, N). We try adding TRCj,i,R on to each
previous TRCk,j,R0 (where R0 is a previous root), whose
best-so-far analyses have already been determined. The
probability of the tactus interval (j, i) depends only on
the previous tactus interval; the probability of the root R
depends only on R0; and the probability of the note
pattern within TRCj,i,R given that TRC, along with its
best lower-level metrical analysis, has already been
computed. (Regarding the division of L2, we must
consider both duple and triple analysis; we add the best
duple analysis of TRCj,i,R on to the best duple analysis of

4For this purpose, any offset that occurs after tactus beat Tn

and before or at beat Tnþ 1 is assumed to occur at Tnþ 1;
following the logic of the generative model, we do not recognize
offsets at non-tactus positions, unless the offset coincides with a
note-onset.
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TRCk,j,R0, and similarly for triple.) It is then a simple
matter to calculate Pi (M,H, S, N) for each TRCk,j,R0 and
choose the one yielding the highest value. We proceed in
this way in a left-to-right manner through the piece; at
each pip i, we consider each TRCj,i,R ending at that pip.5

At the end of the piece, the usual ‘traceback’ process then
applies to find the overall best analysis.

All that remains now is to find level 3 of the metrical
structure. Since the tactus level has already been
computed, there are just five possibilities: L3 could be
duple (with an L3 beat at the first or second L2 beat) or
triple (with an L3 beat at the first, second, or third L2
beat). We consider each of these possibilities, factoring in
a somewhat higher probability for harmonic changes and
note-onsets at L3 beats than L2 beats. (We also factor in
‘phase scores’ for each of the five possibilities. For
example, if L3 is triple, the first L3 beat is quite likely to
be the first or second tactus beat; it is unlikely to be the
third.) We also redo the harmonic analysis at this stage,
considering each possible root for each tactus interval, on
the reasoning that the addition of L3 may affect the most
optimal points for harmonic change. Since the search
process at this stage is not at all expensive, a natural
further step would be to expand the harmonic possibi-
lities, e.g. using key-specific names for chords (I/C, V/F,
etc.); this would yield a richer harmonic analysis and
might improve the metrical analysis as well. This has not
been attempted yet, however.

4. Testing the analytical model

Research in modelling metrical, harmonic, and stream
analysis has been hindered by the absence of agreed
methods and materials for testing. Obviously one person
can do little to address this problem, but I will attempt to
provide some basis for comparison by using materials
that were also used for testing the harmonic and metrical
models presented in Temperley (2001) (part of the
Melisma system). The corpus used there was the
Kostka–Payne (K-P) corpus, a set of 46 excerpts from
the common-practice repertoire from the workbook
accompanying Kostka and Payne’s (1995) theory text-
book, with harmonic analysis (showing keys and Ro-
man-numeral chord symbols) done by the authors. The
excerpts were converted into midifiles as described in
Temperley (2001); the harmonic analyses were encoded
by Bryan Pardo.

With regard to metrical analysis, a fairly simple
method of evaluation will be used here. Any metrical

analysis of a piece can be represented with five integers:
TL¼ average tactus length (in milliseconds): TD¼ divi-
sion of the tactus level (2 if duple, 3 if triple);
UD¼ division of the level above the tactus (2 if duple,
3 if triple); TP¼ number of ‘pickup’ notes, i.e. notes
preceding the first tactus beat; UPh¼ the phase of the
upper level, i.e. whether the first tactus beat is the first
(1), second (2) or third (3) beat of an upper-level span
(the third option is only possible if UD¼ 3). TL is
considered correct if it is within 10% of the correct value;
all other values must match exactly to be correct. It is
important to note that, if the tactus level of an analysis is
substantially wrong, then the other statistics reported
above are of little interest. (For example, suppose an
analysis incorrectly chooses the dotted-quarter note
rather than the quarter-note as the tactus, and suppose
that TD¼ 2 is correct; TD¼ 2 reported by the model
would imply something quite different—a dotted-eighth-
note level—and should be considered wrong.) Thus,
figures for TD, UD, TP, and UPh are only given for cases
where TL is correct.

The probabilistic model and the Melisma model were
both tested on the K-P corpus using the evaluation
system described above. Table 2 shows the results. Of
most interest is the fact that the probabilistic model
achieves substantially better results on the tactus level,
obtaining a correct result on 37 cases versus 32 for the
Melisma model. Regarding other aspects of metrical
structure, the two models are very similar in their level of
performance. Inspection of the output suggests that the
probabilistic model’s consideration of harmony is a
crucial factor in its superior performance. Figure 6 shows

Table 2. The performance of the Melisma and probabilistic
meter-finding models on the Kostka–Payne corpus. TL¼ tactus
length; TD¼ upper-level division (duple or triple); UD¼ tactus
division (duple or triple); TP¼ number of pickup notes (before
first tactus beat); UPh¼ phase of upper level.

Percentage correct

Melisma model Probabilistic model

Quantized corpus (46 excerpts)
TL 32/46 (69.6%) 37/46 (80.4%)
TD 32/32 (100.0%) 37/37 (100.0%)
UD 31/32 (96.9%) 34/37 (91.9%)
TP 29/32 (90.6%) 36/37 (97.3%)
UPh 27/31 (87.1%) 30/34 (88.2%)

Performed piano corpus (19 excerpts)
TL 14/19 (73.7%) 14/19 (73.7%)
TD 13/14 (92.9%) 12/14 (85.7%)
UD 10/14 (71.4%) 12/14 (85.7%)
TP 14/14 (100.0%) 14/14 (100.0%)
UPh 10/10 (100.0%) 12/12 (100.0%)

5At the beginning of the piece, we allow the first tactus beat to
be anywhere within a range of pips before and including the
first note-onset, thus allowing that the first onset may not be on
a tactus beat; at the end of the piece, similarly, we consider a
range of possible positions for the last tactus.
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a passage from one excerpt from the corpus. The
Melisma model places tactus beats one 16th-note too
early, as shown; it favours these positions because the
coinciding notes are ‘long’ (by the Melisma model’s
definition). But the probabilistic model considers har-
monic information and thus favours beat locations that
correspond with the changes of harmony, as is in fact
correct.

The midifiles of the K-P corpus are generated from
musical notation, and are therefore ‘quantized’—with
perfectly regular timing. However, the 19 excerpts from
the corpus for solo piano were also performed by a semi-
professional pianist and midifiles were generated from
these. This allows the model to be tested using the more
irregular and complex timing characteristic of human
performance. The results for both the probabilistic model
and the Melisma model are shown in Table 2; it can be
seen that the two models are very close in performance,
though the probabilistic model achieves slightly better
results on the upper level.

For testing the harmonic model, we again use the K-P
corpus. In this case, we simply measure the proportion of
time in the entire corpus that the model assigns the
correct root. Again, we test both the probabilistic model
and the Melisma model. In this case, however, the two
models are not quite comparable. The reason is that the
Melisma harmonic model requires a metrical analysis as
part of the input. In the current test (as in Temperley,
2001), the Melisma model was given the correct metrical
structure (as indicated by the score). By contrast, the
polyphonic model must infer the metrical structure on its
own, and is not always correct, as indicated by the test
results reported above. Thus the Melisma model has a
significant advantage. Even so, the Melisma model
performs only slightly better than the polyphonic model
(see Table 3). As another comparison, the performance
of the harmonic analysis model of Pardo and Birming-
ham (2002) is also shown in Table 3; this comparison too
is not entirely fair, however, as Pardo and Birmingham’s
model also identifies chord quality (major/minor/dimin-
ished), and they required correct chord quality for a
correct answer.

On balance, the probabilistic model’s metrical analysis
is significantly better than Melisma’s, and its harmonic
performance is nearly as good despite the disadvantage
of having imperfect metrical information. Perhaps
further refinement of the parameters could yield further
improvement. As for the stream component of the
model, this is difficult to test; it is frequently unclear in
common-practice music what the ‘correct’ analysis would
be, and no annotated corpora are available.

5. Transcription

While the performance of the probabilistic model on
metrical and harmonic analysis is quite respectable in
comparison to the Melisma model, a much more
significant advantage of the probabilistic model is its
ability to contribute to ‘surface-level’ processes such as
transcription—inferring a note pattern from an auditory
signal. As noted earlier, an analytical model could
contribute to transcription by assessing the probabilities
of note patterns (N), which can then serve as the ‘prior’
for a Bayesian transcription process:

PðNjSignalÞ / PðSignaljNÞPðNÞ: ð7Þ

Fig. 6. Beethoven, Rondo Op. 51 No. 1, mm. 109-11 (from the Kostka–Payne corpus), showing the tactus analyses of the Melisma
model and the probabilistic model.

Table 3. Performance of harmonic analysis models on the
Kostka–Payne corpus.

Model Score

Melisma model (% of total
time correctly labelled)

80.8%

Pardo and Birmingham 2002 (% of
minimal segments correctly labelled)*

76.5%

Probabilistic model (% of total time
correctly labelled)

78.7%

*A ‘minimal segment’ is a time segment between successive
onsets or offsets. While the Melisma and probabilistic models
only produce root judgments, Pardo and Birmingham’s model
also identifies chord quality (major/minor/diminished), and
they required correct chord quality for a correct answer.
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In the current case, the probability of a note pattern can
be represented as

PðNÞ ¼
X

M;H;S

PðM;H;S;NÞ: ð8Þ

A method for computing this arises quite naturally out of
the analytical process described earlier. As with the
analytical method itself, however, it is somewhat
approximate. In the first place, rather than summing
the quantity over all stream structures, we consider
only the most probable stream structure S*, derived
in the ‘first-pass’ stream analysis. Thus we use the
estimate

PðNÞ (
X

M;H

PðM;H;S%;NÞ: ð9Þ

The calculation of this quantity takes place in the
metrical-harmonic search described earlier. In choosing
a lower-level metrical analysis for each TRC, we sum the
probabilities of all possible structures being considered.
Then, in doing the dynamic-programming search to find
the best sequence of TRCs, we also compute—for each
TRCx—the total probability of all analyses up to that
point ending in TRCx. At the end of the piece, the sum of
this quantity for all final TRCs gives us the quantity in
Equation 9.

In order for a note pattern to yield a high
probability, there must be some combined metrical/
harmonic/stream structure (or perhaps more than one)
with which it achieves reasonably high joint probability.
This means that the notes should be—for the most
part—aligned with regularly spaced beats; they should
be grouped into harmonic segments such that most
notes within each segment are chord-tones of the same
root; and they should be organized into a small number
of melodic streams with relatively few long rests and
large leaps within streams. If a note pattern does not
meet these requirements, its probability will presumably
be low, because for every possible combined structure,
either P(Njstructure) or P(structure) will be low (or
perhaps both). Thus, the probabilities assigned by the
model reflect a kind of typicality or ‘grammaticality’ of
note patterns within the language of common-practice
music.

We can illustrate this point with a simple example.
Figure 7(a) shows the Bach minuet passage from
Figure 1; Figures 7(b)–(d) show altered versions of the
phrase. Beside each example is the probability of the
note pattern assigned by the model. It can be seen that
the model assigns higher probability to the original
pattern than to any of the variants. And indeed, each
variant is in some way ‘ungrammatical’ in relation to
the common-practice style, or at least less normative
than the original. In Figure 7(b), one of the notes has

been displaced by an octave, forcing the model to
create a new stream just for that note (which incurs a
low probability). In Figure 7(c), one of the right-hand
notes has been shifted by one eighth-note, placing it on
a weak eighth-note beat rather than a quarter-note
beat. And in Figure 7(d), the second D of the melody
has been replaced by C#, which makes it a non-chord-
tone in relation to the apparent root of G (and one
that does not resolve by step).

In this way, the analytical model presented here can be
used to evaluate the probability of a note pattern.
Combined with a probabilistic signal-processing model
which could calculate the ‘likelihood’ of the signal,
P(SignaljN), this would yield a proportional estimate of
P(NjSignal). However, this is only one part of the
transcription problem. As with higher-level analytical
problems, there remains a formidable search problem
of finding the note pattern that yields the maximal
value of P(NjSignal)P(N). In recent work in collabora-
tion with Taylan Cemgil, I have begun to explore a
solution to this problem. As in the framework just
described, the system uses the analytical model to
evaluate the probabilities of note patterns (we will
henceforth call this the ‘prior’ model), as well as a
signal-processing model that analyses the resulting
likelihood of the signal (the ‘signal’ model), but the
two interact in a rather complex way.

Our solution relies on the concept of a pitch 6 pip
(PP) array—a two-dimensional array with pips on one

Fig. 7. (a) The Bach passage shown in Figure 1; (b), (c), and (d)
show three altered versions of the passage (changes are marked
with asterisks). Beside each passage is the log probability
assigned to the note pattern by the model.
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axis and pitch categories on the other. The number in
each cell of the array represents the probability of a
note-onset at that pip and pitch. The idea is that the
prior model generates a PP array which represents its
predictions as to the likely locations of note-onsets,
both in pitch and time, based on the prior musical
context. But of course this requires input from the
signal-processing model indicating what notes have
already occurred. Thus we use an iterative back-and-
forth process. The piece is divided into ‘chunks’ of one
second in length. For each chunk, the prior model
produces a PP array; the signal model then uses this
information in analysing the signal for the chunk, and
returns a determinate note pattern for the chunk. The
prior model adds this note pattern on to its note
representation, analyses it, and generates a prediction
for the next chunk, and so on through the piece (see
Figure 8).

Some explanation is needed for how the prior model
generates PP arrays. Once again, the stream analysis is
handled somewhat separately. At each chunk Kn, we
assume that the note pattern of chunk Kn71 has already
been generated; we assume that a stream analysis has
already been generated as well (the handling of the first
chunk is an exception and will be discussed below). The
metrical and harmonic structures of previous chunks
are in an indeterminate state, represented by the
dynamic programming table. Let us assume just one
stream has been found in chunk Kn71. Now, for each
combination of a pip x and a pitch y in chunk Kn, we
wish to know

Pðx ¼ onset; pitchx ¼ yjPNPÞ
¼ Pðx ¼ onsetjPNPÞ $ Pðpitchx ¼ yjPNPÞ;

ð10Þ

where pitchx refers to the pitch of the note at pip x, if any,
and PNP is the note pattern of all prior chunks. Like the
analytical process, our calculation of this depends
crucially on the concept of a TRC (tactus-root combina-
tion). We expand the expression above as follows (X is
the set of TRCs containing pip x):

Pðx¼onsetjPNPÞ$Pðpitchx¼yjPNPÞ

¼
X

TRC2X
Pðx¼onset;TRCjPNPÞ

 !

$
X

TRC2X
Pðpitchx¼y;TRCjPNPÞ

 !

¼
X

TRC2X
Pðx¼onsetjTRCÞ$PðTRC;PNPÞ=PðPNPÞ

 !

$
X

TRC2X
Pðpitchx¼yjTRCÞ$PðTRC;PNPÞ=PðPNPÞ

 !

:

ð11Þ

Given a TRC, the probabilities of notes at different
pitches and times can be calculated in a purely local
fashion. We consider all possible lower-level metrical
analyses of the TRC, and for each one we calculate the
probability of a note-onset at each pip, adding the
appropriate probability mass. (The ‘anchoring’ method
cannot really be used here—since the note status of
neighbouring higher-level beats is not known—so we
simply define the probability of onsets at each beat level
in a context-free fashion.) As for P(pitchx¼ y), this
depends only on the root of the TRC and the interval to
the previous note in the stream. P(TRC, PNP) can be
calculated as the summed joint probability of the TRC
with all prior metrical and harmonic structures, which
can easily be found from the dynamic programming
table. And P(PNP) can be calculated using the method
described above for calculating the probability of
complete note patterns. Once the quantity in Equation 11
has been calculated for each active stream, the PP array
value for a (pip, pitch) combination simply sums its
values for all active streams.

Once the prior model has produced a PP array for an
unseen chunk, it then receives a determinate note pattern
for that chunk from the signal model, which it must
analyse. This required some modifications of the

Fig. 8. The transcription process.
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program to operate in a more left-to-right (‘causal’)
manner. Let us assume we have produced a PP array for
an unseen chunk Kn, extending from pip i to pip j, and
have now received a note pattern for it. As before, the
stream analysis occurs first; the first-pass stream analysis
procedure, which has already been used to find the

stream structure of the previous note pattern, is simply
continued from pips i through j. The metrical-harmonic
analysis for the chunk is then performed, by continuing
the dynamic-programming table for the region (i, j);
as noted earlier, however, no determinate metrical-
harmonic analysis is chosen (though this can easily be

Fig. 9. A PP array for Chunk 3 of the Bach passage.
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done at any time if desired, e.g. at the end of the piece).
The ‘second-pass’ metrical-harmonic analysis, in which
level 3 of the meter is found and the harmony is
reanalysed, is simply skipped. Given this analysis of
chunk Kn, the program is then ready to generate the
prediction for chunk Knþ 1.

While the transcription system described above is still
under development, the ‘prior model’ component is
complete. A sample PP array generated by the prior
model is shown in Figure 9. This is for a chunk of the Bach
minuet shown in Figure 1 (shown again in Figure 9):
chunk 3, marked with a solid bracket. The PP array is the
prior model’s prediction for this ‘unseen’ chunk, given the
note pattern of previous chunks. (Rather than using note
patterns produced by the signal model, here we simply use
the correct note patterns for chunks 0 through 2.) Each
value in the array represents the log probability of a note-
onset at that pip and pitch. Several features of the PP array
deserve mention. In the time dimension, one can see a peak
in the probability values at the very beginning of the chunk
(time 3000), followed by a decline, and subsequent peaks at
around times 3450 and 3850. This reflects the influence of
the metrical structure; the previous context has suggested a
tactus level of around 450 ms, with a previous beat at time
2600. The chunk also reflects smaller peaks halfway
between the tactus peaks, representing the expected
locations for L1 events. In the pitch dimension, if we
consider just the first pip (or any other pip for that matter),
peaks can be seen at pitches 60 (C4) and 76 (E5); this is
because there are two active streams in the previous
context, and the most recent pitches in the two streams are
C4 and E5. Probabilities decrease gradually as we move
away from these pitches, reflecting the fact that the most
likely next pitch in each voice is likely to be close to the
previous one. However, the curve is somewhat irregular.
For example, pitch 62 (D4, two half-steps away from C4)
has a higher value than 61 (C#4, one half-step away). No
doubt this is due to the effect of harmony. Under the most
probable analysis of the previous context, the previous
tactus interval had a root of C; the most probable
harmonic continuations from this root are C (involving
no harmonic change) and G and F (involving root motion
by fifth). D is a scale-tone in relation to C and a chord-tone
in relation to G, whereas C# is not a chord-tone of any of
these roots and a scale-tone only in relation to F (minor).
In this example, then, we see the effect of meter, harmony,
and stream structure on the prediction of future notes.

A special situation occurs at the initial chunk of a
piece; in this case, the prior model must make a
prediction for the chunk without any previous note
pattern to guide it. In particular, there are no active
streams that can be used to set pitch probabilities. Thus
the model assigns pitch probabilities using an initial pitch
distribution similar to that described in the analytical
model. Beyond this, the model’s procedure for the first
chunk is essentially the same as for non-initial chunks.

The result is a very ‘flat’ PP array which assigns more or
less equal probability to all pips and pitches (except for a
increase towards the middle of the pitch range). Clearly,
this is of limited value to the signal model, and it can be
expected that the resulting note pattern returned by the
signal model will be of poorer quality than that of
subsequent chunks.

As mentioned earlier, the transcription system de-
scribed above is still under construction. Work is
ongoing to refine the signal model and the interaction
of the signal model and prior model.

6. Conclusions

While the current model leaves room for improvement in
many ways, it demonstrates the overall viability of a
unified approach to the modelling of polyphonic music,
which identifies multiple kinds of structure and at the
same time estimates the probabilities of note patterns.
There are many other kinds of musical knowledge that
could be incorporated into the model—for example,
more detailed knowledge about harmony (knowledge of
functional harmony and of stylistic progressions such as
cadences), knowledge of conventional phrase structures
(the norm of 4-bar phrases), and awareness of repeated
melodic patterns or ‘parallelisms’ (which play an
important role in meter, among other things). The
challenges will be, first, to find logical ways of integrating
these kinds of musical knowledge with the existing
generative process, and second, to keep the computa-
tional complexity of the inference problem at a tractable
level, either with exact methods such as dynamic
programming or with reasonable approximations.

With regard to the transcription problem, the system
sketched above appears to be the first concerted attempt to
bring to bear higher-level musical knowledge on the
transcription process. It remains to be seen how much
benefit this knowledge will yield. The fairly simple
interactive procedure outlined in Figure 8 could of course
be expanded in various ways. It is possible, for example,
that the ‘left-to-right’ process of generating PP arrays
could be combined with a ‘right-to-left’ process, so that
information from the signal model could lead to improved
predictions for previous chunks, though that would not fit
so naturally with the model’s left-to-right analytical
process. It is also possible that, once a note pattern was
chosen, it could be adjusted by the analytical model in an
incremental ‘hill-climbing’ fashion, by deleting or adding
notes or shifting them in pitch or time, so as to improve the
overall probability of the note pattern. (One can imagine,
for example, that such a system might be able to adjust
Figures 7(b)–(d) to produce Figure 7(a).)

The applications and implications of the current
project are numerous. The many possible uses of an
accurate polyphonic transcription system are apparent
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and well known. Structural analysis also has important
applications. For example, in classifying music by style,
judging the similarity of two pieces, or extracting salient
melodic and thematic material from a piece, the
availability of structural information such as meter,
harmony and stream structure would certainly be help-
ful. The model may also have important implications for
the modelling of cognition. Experimental work has made
clear that metrical, harmonic and stream structure have
broad psychological reality among listeners (for a
survey of the evidence, see Temperley, 2001). It seems
clear, also, that listeners have at least some ‘transcrip-
tion’ ability, in that they can recover some note
information from polyphonic audio input; for example,
most listeners can identify at least the melody in a
classical polyphonic piece of moderate complexity. As
argued in Temperley (2007), the ability to assign
probabilities to note patterns may also be involved in
cognitive processes such as expectation and error-
detection. Most previous experimental and computa-
tional work has treated such ‘surface-level’ processes as
separate and independent from structural processes such
as metrical and harmonic analysis. But the current
model suggests that they may in fact be closely
intertwined, and offers a proposal as to how they may
be accomplished within a single unified framework.
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