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Abstract. The key-profile model (originally proposed by Krumhansl and
Schmuckler, and modified by Temperley) has proven to be a highly successful
approach to key-finding. It appears that the key-profile model can be
reinterpreted, with a few small modifications, as a Bayesian probabilistic
model. This move sheds interesting light on a number of issues, including the
psychological motivation for the key-profile model, other aspects of musical
cognition such as metrical analysis, and issues such as ambiguity and
expectation.

1. Introduction

How do listeners determine the key of a piece? This question has been the subject of
considerable attention in recent years. A number of computational models have been
proposed, reflecting a variety of approaches ([11], [1], [2], [9], [16]). One important
proposal has been the key-profile model of Krumhansl and Schmuckler [8]. In this
model, the distribution of pitch-classes in a piece is compared with an ideal
distribution or “key-profile” for each key; the key whose profile best matches the
pitch-class distribution of the piece is the preferred key. Elsewhere ([13], [14]) I have
proposed a modified version of the original Krumhansl-Schmuckler (hereafter K-S)
model which yields significantly improved performance; both the K-S model and my
modified version will be discussed further below.

The purpose of the current paper is to examine the connection between the key-
profile model of key-finding and the Bayesian method of cognitive modeling.
Examination of these two approaches shows that they have a great deal in common;
indeed, it could practically be argued that the key-profile model (particularly my own
version of it) simply is a Bayesian probabilistic model. If this is true, then it is well
worth noting for several reasons. First, the Bayesian perspective provides a more
compelling psychological motivation for the key-profile model than anything that has
been provided before. Secondly, the connection explored here may point to a broader
connection between Bayesian modeling and a general approach in music cognition,
the preference rule approach, which has been applied to a variety of problems in
musical analysis, such as grouping, metrical analysis, harmonic analysis, and stream
segregation. The Bayesian perspective may also be relevant to other aspects of
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musical cognition, such as ambiguity and expectation. We will return to these ideas at
the end of the paper.

I will begin by presenting the key-profile model, followed by a brief introduction
to Bayesian modeling. I will then consider how the key-profile model might be
reinterpreted within the Bayesian framework.

2. The Key-Profile Model of Key-Finding

The original key-profile model is based on a set of twelve-valued vectors, called key-
profiles, representing the stability or compatibility of each pitch-class relative to each
key. Key-profiles for C major and C minor are shown in Figure 1; profiles for other
keys can be generated by simply shifting the values over by the appropriate number of
steps. (For example, while in C major the value for C is 5.0 and the value for C# is
2.0, in C# major the value for C# would be 5.0 and the value for D would be 2.0.)
These are the profiles used in my modified version of the key-profile model; they
differ slightly from those used in Krumhansl and Schmuckler’s original version,
which were based on experimental data. (See [14] for an explanation of why these
modified values were proposed.) It can be seen that the key-profiles reflect basic
theoretical principles of tonal music. In the major profile, the values for the major
scale are higher than those of chromatic pitches; within the major scale, values for
pitches of the tonic triad are higher than for other diatonic pitches, and the value for
the tonic is highest of all. The same is true of the minor profile (assuming the
harmonic minor scale).

Given these profiles, the model judges the key of a piece by generating an “input
vector” for the piece; this is, again, a twelve-valued vector, showing the total duration
of each pitch-class in the piece. The correlation value is then calculated between each
key-profile vector and the input vector. In essence, this involves taking the product of
each key-profile value with the corresponding input-vector value, and summing these
products.1 The key yielding the maximum correlation value is the preferred key.
Informally speaking, if the peaks in the input vector correspond with the peaks in the
key-profile vector, the score for that key will be large. Figure 2a shows a simple
example; for this passage, the model chooses C major as the correct key, just as it
should.

My own tests of the Krumhansl-Schmuckler model revealed several problems with
it, which were addressed in a modified version of the model (see [14] for details). One
problem with the original model was that repeated notes appeared to carry too much
weight. In a case such as Figure 2b, the repetitions of the E give a strong advantage to
E major and E minor, even though C major is clearly the correct judgment. (A similar
problem occurs when a pitch-class is duplicated in different octaves.) It seems that,

                                                          
1 This is a simplified version of the correlation formula, but appears to give essentially the

same result. For discussion, see [14], pp. 173-6.
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for a small segment of music at least, what matters most is the pitch-classes that are
present, rather than how much each one is present. This problem was addressed in the
following way. The model assumes some kind of segmentation of the piece which has
to be provided in the input. (It works best to use segments of one to two seconds in
length. In the tests reported below, I used metrical units—measures, half-measures,
etc.—always choosing the smallest level of metrical unit that was longer than 1
second.) In constructing the input vector for a segment, the model simply gives each
pitch-class a value of 1 if it is present in the segment and 0 if it is not.  It then uses this
“flat” input vector to calculate the correlations with the key-profiles.  Since the input
vector values are all 1 or 0, this simply amounts to adding the key-profile values for
the pitch-classes that score 1 in the input vector. Consider Figure 2a; in this case, the
score for C major is produced by adding the values in the C major profile for C, D, E,
and F, yielding a score of 5.0 + 3.5 + 4.5 + 4.0 = 17.0. This “flat-input” approach
proved to achieve substantially better results than the “weighted-input” approach of
the original K-S model.
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Fig. 1. Key-Profiles for C major (above) and C minor (below).
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Fig. 2.  (A) Bach, Invention No. 1, m. 1. (B) A problematic passage for the K-S model.

A further modification of the original key-profile model concerned modulations
(changes in key). The original key-profile model is incapable of handling modulation;
it simply produces a single key judgment for the entire input. Since the modified
version of the model requires a segmentation of the piece in the input, one solution
would be to judge the key of each segment independently; then modulations would
simply emerge at points where the key of one segment differed from that of the
previous one. However, this is not very satisfactory. Intuitively, key has a kind of
inertia; once we are in a key, we prefer to remain in that key unless there is strong
evidence to the contrary. To handle this, the model evaluates each segment
independently, but imposes a “change penalty” if the key for one segment differs
from the key for the previous segment. These penalties are then combined additively
with the key-profile scores to choose the best key for each segment.

Once the change penalty is introduced, this means that the analysis for a particular
segment is sensitive to context: the optimal analysis for one segment might depend on
what precedes it. Moreover, if the model’s goal is to find the highest-scoring analysis
overall, the analysis of a particular segment might depend on what follows, as well. If
the model is to be assured of finding the optimal analysis then, it is necessary for it to
consider all possible analyses of the entire piece, where an analysis is simply a
labeling of every segment with a key, and choosing the highest-scoring one overall.
Since the number of possible analyses increases exponentially with the number of
segments, this approach is not feasible in practice, either for a computer or for a
human mind. In the computational implementation I devised for the model, dynamic
programming is used to find the highest-scoring analysis without actually generating
them all.

The model was tested using the workbook and instructors’ manual accompanying
the textbook Tonal Harmony by Stefan Kostka and Dorothy Payne ([7], [6]). The
workbook contains a number of excerpts from pieces in the tonal repertory; the
instructors’ manual provides harmonic analyses done by the authors, showing keys
and modulations. The model was run on 46 excerpts from the workbook, and its
output was compared with the analyses in the instructors’ manual. (The key-profiles
were set prior to this test. However, the change penalty was adjusted to achieve
optimal performance on the test.) Out of 896 segments, the program labeled 751
correctly, a rate of 83.8% correct. Inspection of the results showed that the program's
errors were mainly due to three things. First, the program's rate of modulation was
sometimes wrong: it sometimes modulated where the correct analysis did not (perhaps
treating something only as a secondary harmony or “tonicization” instead), or vice
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versa. Second, the program frequently had trouble with chromatic harmonies such as
augmented sixth chords. It might be desirable to build special rules into the program
for handling such cases, though this has not so far been attempted. A third source of
error in the model concerned pitch spelling. The original key-profile model did not
distinguish between different spellings of the same pitch: for example, Ab and G#. (I
have called these categories “tonal pitch-classes” as opposed to the “neutral pitch-
classes” of conventional theory.)  However, it seemed likely that allowing the model
to make such distinctions—so that, for example, E is more compatible with C major
than Fb is—would improve the model’s performance. A version of the model was
developed which recognized such distinctions, and its level of performance was
indeed slightly higher (87.4% on the Kostka-Payne corpus). However, if our aim is to
model perception, giving the program such information could be considered cheating,
since the spelling of a pitch might in some cases only be inferable by using
knowledge of the key. In the tests that follow, the “neutral-pitch-class” version of the
key-profiles will be used (exactly as shown in Figure 1), thus avoiding this
problematic issue.

We now turn to a brief introduction to the concepts of Bayesian modeling. We will
then consider the connection between Bayesian models and the key-profile model.

3. Bayesian Modeling

Communication generally involves the transmission of a message of some kind from
a producer to a perceiver. As perceivers, we are often given some kind of surface
representation of a message (what I will simply call a surface); our task is to recover
the underlying content that gave rise to it—the information that the sender was trying
to convey—which I will simply call a structure. The problem is probabilistic in the
sense that a single surface might arise from many different structures. We wish to
know the structure that is most probable, given a particular surface—in the
conventional notation of probability, we need to determine

argmaxstructure p(structure |  surface) (1)

A solution to this problem lies in Bayes’ rule. Bayes’ rule states that, for any two
events A and B, the probability of A given B can be computed from the probability of
B given A, as well as the overall probabilities (known as the “prior probabilities”) of
A and B:

p(A | B) = p(B | A) p(A)
                         p(B) (2)

In our terms, for a given surface and a given structure:

p( structure | surface ) = p(surface | structure) p(structure)
                                                        p(surface) (3)

To find the structure that maximizes the left side of the equation, we need only find
the structure that maximizes the right side—and this turns out to be easier. Note, first
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of all, that “p(surface)”—the overall probability of a given surface—will be the same
for all values of “structure”. This means that it can simply be disregarded. Thus

argmaxstructure p(structure |  surface)
= argmaxstructure p(surface  | structure) p(structure) (4)

Thus, to find the most probable structure given a particular surface, we need to
know—for every possible structure—the probability of the surface given the
structure, and the prior probability of the structure.

The Bayesian approach has proven useful in modeling a number of perceptual and
cognitive processes. One example is speech recognition. In listening to speech, we are
given a sequence of phonetic units—phones—and we need to determine the sequence
of words that the speaker intended. In this case, then, the sequence of phones is the
surface and the sequence of words is the structure. The problem is that a single
sequence of phones could result from many different words. Consider the phone
sequence [ni] (this example is taken from [5]). Various words can be pronounced [ni],
under certain circumstances: “new”, “neat”, “need”, “knee”, and even “the”.
However, not all of these words are equally likely to be pronounced [ni]; p(surface |
structure) may be higher for some words than others. The words also differ in their
prior probabilities—that is to say, p(structure) is higher for some words than others.
Once we know p(surface | structure) and p(structure) for each word (relative to the
surface [ni]), we can take the product of these values; the structure maximizing this
product is the most likely structure given the surface.

4. The Key-Profile Model as a Bayesian Model

Like speech recognition or other perceptual processes, key-finding requires inferring a
structure from a surface. In this case, the structure is a sequence of keys; the surface is
a pattern of notes. The problem is to infer the most likely structure, given a particular
surface. According to Bayes’ rule, we can do this if we know—for all possible
structures—the probability of the structure itself and the probability of the surface
given the structure.

First consider the probability of a structure itself: a labeling of each segment with a
key. (We will continue to assume a segmentation of the piece in the input.) Assume
that for the initial segment of a piece, all 24 keys are equally probable. For subsequent
segments, there is a high probability of remaining in the same key as the previous
segment; switching to another key carries a lower probability. (We consider all key
changes to be equally likely, though this may be an oversimplification.) The
probability of a given key structure can then be calculated as the product of these
“modulation scores” (Sm) for all segments. Let us assume, for any segment except the
first, a probability of .8 of remaining in the same key as the previous segment, and a
probability of .2/23 of changing to any other key. For a structure of four segments, C
major - C major - C major - G major, the score will be

1/24 x .8 x .8 x .2/23 = .000232 (5)
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Now, how do we calculate the probability of a surface given a structure? This
problem could be solved in several different ways. I will propose one solution here,
and then consider a second possibility later on. Let us suppose that, in each segment,
the composer makes twelve independent decisions as to whether or not to use each
pitch class. These probabilities can be expressed in a key-profile. We could base these
key-profiles on actual data as to how often each pitch-class is used in segments of a
particular key. Such data is shown in Table 1 for the Kostka-Payne corpus. As with
the original key-profile model, the data is collapsed over all major keys and all minor
keys, so that the profiles represent pitch-classes relative to keys—scale degrees,
essentially. As an example, scale degree 1 (the tonic) occurs in .748 (74.8%) of
segments in major keys; scale degree #4, by contrast, occurs in only .096 (9.6%) of
segments. (It can be seen that the basic hierarchy of scale degrees in the profiles of
Figure 1—with the tonic at the highest level, then other degrees of the tonic chord,
then other diatonic degrees, then chromatic degrees—is reflected in these key-profiles
as well; one odd exception is that 5 scores higher than 1 in minor.)

Table 1. The frequency of occurrence of each scale degree (relative to the current key) in the
Kostka-Payne corpus, for major and minor keys. Numbers represent the proportion of segments
in which the  scale-degree occurs.

Scale degree Major keys Minor keys
1 .748 .712
#1/b2 .060 .084
2 .488 .474
#2/b3 .082 .618
3 .670 .049
4 .460 .460
#4/b5 .096 .105
5 .715 .747
#5/b6 .104 .404
6 .366 .067
#6/b7 .057 .133
7 .400 .330

The probability of a scale degree not occurring in a segment is, of course, 1 minus the
score in the profile: for scale degree 1 in major keys, 1–.748 = .252. For a given key,
the probability of a certain pitch-class set being used is then given by the product of
the key-profile values—we could call these “pc scores” (Spc)—for all pitch-classes
present in the segment (p), multiplied by the product of “absent-pc” scores (S~pc) for
all pitch-classes not present (~p).

key-profile score = �Spc �S~pc

(6)

To find the most probable structure given a surface, we need to calculate
p(structure) p(surface | structure). This can be calculated, for an entire piece, as the
product of the modulation scores (Sm) and the key-profile scores for all segments (s):

~pp
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 p(structure) p(surface | structure) =   � (Sm (�Spc) (�S~pc) ) (7)

A standard move in Bayesian modeling is to express such a formula in terms of
logarithms. Since the function ln x is monotonic, two values of ln x will always have
the same ranking of magnitude as the corresponding values of x; if our only aim is to
find the maximum value of x, then using ln x instead works just as well. The
logarithm for the formula above can be expressed as

� ( ln Sm + � ln Spc + � ln S~pc) (8)

Now the score is a sum of segment scores; each segment score is itself the sum of a
modulation score, pc scores for present pc’s, and absent-pc scores for absent pc’s.

It can be seen that this is very similar to the key-profile model proposed earlier. If
we pretend that the key-profile values and modulation penalties from the earlier
model are really logarithms of other numbers, then the two models are virtually
identical. There are some superficial differences. Since the scores in the Bayesian
model are all logarithms of probabilities (numbers between 0 and 1), they will all be
negative numbers. Also, the Bayesian model adds modulation scores for all segments,
not just modulating segments. These are simply cosmetic differences which could be
removed by scaling the values differently in the original model, without changing the
results. There is one significant difference, however. In the earlier model, I simply
summed the key-profile scores for the pc’s that were present. In the Bayesian model,
we also add “absent-pc” scores for pc’s that are absent. It appears that this may be a
significant difference between the two models.

A Bayesian version of the key-profile model was developed, exactly as just
proposed. I used the key-profiles generated empirically from the Kostka-Payne
corpus, as shown in Table 1. (Normally the corpus used for estimating the parameters
should not be used for testing, but this was deemed necessary given the small amount
of data available.) The only parameter to be set was the change penalty. Different
values of the change penalty were tried, and the one that yielded optimal results was
chosen. On the Kostka-Payne corpus, the Bayesian key-finding model achieved a
correct rate of 77.1%, somewhat lower than correct rate of the earlier version (83.8%).
Again, the main difference between the two models appears to be that in the second
model, “absent-pc” scores are added to the key-profile scores. (The key-profiles are
also different, but the key-profiles in the Bayesian model were generated directly
from the test data; thus one would expect them to be optimal.) It is unclear why this
would result in lesser performance for the Bayesian model. I intend to investigate this
further.

One issue to consider, before continuing, is the probabilistic interpretation of key-
profiles. In the model above, a key-profile is treated, essentially, as 12 independent
probability functions indicating the probability of each scale degree occurring in a
segment (and, thus, the probability of each pitch-class relative to each key). This
approach is not ideal, since it requires a prior segmentation of the piece; there is little
reason to think that such a segmentation is involved in human key-finding. An
alternative approach—simpler, in some ways—would be to treat each key-profile as a

s p ~p

ps ~p
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single probability function (so that the 12 values of the profile would sum to 1). This
function could then be used to estimate the scale-degree probabilities of an event
given a certain key. Events could be treated as independent; the probability of a note
sequence given a key would then be given by the product of the key-profile scores for
all events—or, in logarithmic terms, the sum of scores for all events. This method
resembles the “weighted-input” approach of Krumhansl and Schmuckler’s original
model, discussed earlier, in which the input vector reflects the number and duration of
events of each pitch-class. The problem with this approach has already been noted: it
tends to give excessive weight to repeated events. Initial tests of the key-profile model
showed significantly better performance for the flat-input model than the weighted-
input model. Thus it appears that treating the key-profiles as probability functions for
independent events is unlikely to work very well. (Intuitively, in Figure 2b, the
weighted-input approach assumes a generative model in which the composer decides
to use C and G once, and then makes eight independent decisions to use E. But a more
plausible model is that the composer decides to use certain pitch-classes, and then
decides to repeat one of them.)

It is possible, however, that a more successful model could be developed based on
the “weighted-input vector” idea. One way would be to assume that a musical surface
is generated from a sparser, “reduced” representation of pitches, something like a
“middleground” representation in a Schenkerian analysis. In such a representation,
immediate repetitions of pitches such as those in Figure 2b (and also perhaps octave
doublings and the like) would be removed. Possibly, a “weighted-input” model
applied to such a reduction would produce better results; and it would also avoid the
arbitrary segmentation required by the “flat-input” model. However, such an approach
would present serious methodological problems, since it would require the
middleground representation to be derived before key-finding could take place.2

5. Further Implications

My main aim in this paper has been simply to show that the key-profile model as
proposed in [14] can be construed, with some small modifications, as a Bayesian
probabilistic model. This connection is of interest for several reasons. First, the
Bayesian approach provides a new perspective on the key-finding process; in a sense,
it explains why the key-profile method is a sensible and effective way of determining
key. The Bayesian viewpoint suggests that we can think of composition as a
stochastic process in which a sequence of keys are generated and musical surfaces are
then generated from these keys. (It is not really a stochastic process, but it can be
effectively modeled in this way). From the perceiver’s point of view, given
knowledge of scale-degree distributions and the likelihood of key changes, the
intended sequence of keys can then be recovered. In this way, the key-profile model
emerges as a very natural and logical way of recovering key structure.

                                                          
2 It is also instructive to compare the Bayesian formula with the correlation formula used in

Krumhansl and Schmuckler’s original model (which, as already mentioned, differs slightly
from the formula used in my model). However, space limitations prevent such a comparison
here.
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The relevance of Bayesian modeling to music cognition may go well beyond key-
finding. The key-profile model as proposed in [14] can be viewed as a preference rule
system—a model involving several rules which are used to evaluate many possible
representations and select the preferred one. Preference rule models have been
proposed for a variety of aspects of musical perception, including metrical analysis,
grouping analysis, pitch reduction, harmonic analysis, and stream segregation ([10],
[14]). In the case of the key-profile model, just two preference rules are involved:

Key-Profile Rule: Prefer to choose a key for each segment which is
compatible with the pitches of the segment (according to the key-profiles);

Modulation Rule: Prefer to minimize the number of key changes.
 

It appears, in fact, that preference rule models generally can be construed as
Bayesian models. One insight offered by the Bayesian view is that it suggests a
distinction between two categories of preference rules. Some rules relate to the
probability of a certain structure; we could call these “structure rules”. Others relate to
the probability of a surface given a structure; we could call these “surface-to-structure
rules”. In the case of the key-profile model, the Modulation Rule is a structure rule;
the Key-Profile Rule is a structure-to-surface rule. Consider another example:
metrical analysis. In this case, the structure is a row of beats (or a framework of levels
of beats, but we will consider just a single level of beats for now), and the surface is
once again a pattern of notes. The metrical model proposed in [14] (see also [15])
involves three main rules:

Event Rule: Prefer for beats to coincide with event-onsets;

Length Rule: Prefer for beats to coincide with longer events;

Regularity Rule: Prefer for beats to be roughly evenly spaced.

The process of deriving a row of beats involves optimizing over these three rules:
choosing the metrical level which aligns beats with as many events as possible,
especially long events, while maximizing the regularity of beats. In this case then, the
Regularity Rule is a structure rule, indicating the probability of structures (more
regular structures are more probable); the Event Rule and Length Rule are structure-
to-surface rules, indicating the probability of surface patterns given a certain structure
(patterns are more probable which align events with beats, especially longer events).
The model in [14] evaluates a possible analysis by assigning to it scores from each of
these three rules and summing these scores. It can be seen how a model of this kind
could be reconstrued as a Bayesian model, much as we have reinterpreted the key-
profile model in Bayesian terms. (Cemgil et al. ([3], [4]) propose a Bayesian model of
metrical analysis, somewhat along these lines.)

Aside from problems of musical information extraction, I have discussed several
other applications of preference rule models [14]. One is in the representation of
ambiguity. With regard to key-finding, ambiguity is a phenomenon of recognized
importance. Some pitch-sets are relatively clear in their tonal implications, such as
major or minor scales or triads; others are ambiguous, in that they are compatible with
several different scales (such as a diminished seventh chord, C-Eb-F#-A). In the
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model proposed in [14], the ambiguity of a passage is captured in the numerical
scores output by the model for different analyses: an ambiguous passage is one in
which two or more different analyses are more or less “tied for first place”. Once
again, this aspect of the key-profile model transfers straightforwardly to the Bayesian
version; an ambiguous passage is one in which several analyses are more or less
equally probable.

Another useful aspect of the Bayesian approach concerns the estimation of
probabilities of musical surfaces. Bayesian theory tells us that the probability of a
surface and a structure occurring in combination equals p(surface | structure) p
(structure). It further tells us that the overall probability of a surface is equal to its
probability in combination with a structure, summed over all possible structures:

p(surface) = �  p(surface | structure) p(structure) (9)

Recall that the quantity p(surface | structure) p(structure) is exactly what must be
generated, for all possible structures, in order to calculate the most probable structure
for the surface. Thus it is not implausible to suppose that perceivers generate a
measure of the probability of the surface itself, by summing these scores. In terms of
key structure, a highly probable surface is one for which there is one (or perhaps more
than one) highly probable key structure—one with relatively few modulations—
which might, with high probability, give rise to it. Other surfaces are less probable,
because no such structure exists. (Imagine a passage with a great deal of
chromaticism, or rapid modulations, or both.) One application of this idea concerns
expectation. It is well known that, in hearing a piece of music, listeners generally
form expectations as to what is coming next; and some theorists have argued that the
way music fulfills and denies expectations is an important part of its meaning and
effect. It is natural to suppose that listeners’ expectations are governed by the same
probabilistic models which (by hypothesis) govern their processing of musical input.
With regard to key structure, we expect a continuation which is relatively probable
given the probable structure—that is, one which adheres to the scale of the currently
established key (though undoubtedly other constraints are involved in expectation as
well). (Indeed, something along these lines has already been experimentally
demonstrated; Schmuckler [12] has shown that listeners’ expectations for melodic
continuations correspond closely with the key-profiles of the original K-S model.)
The Bayesian approach would seem to offer a very natural method for modeling this
process.3

Thus the Bayesian approach appears to offer a number of benefits. It provides a
probabilistic basis for preference rule models generally, not merely for key-finding
but for metrical analysis and other aspects of structure as well. It also suggests a way
of modeling ambiguity and expectation. While many of the ideas in the paper are
conjectural, the Bayesian framework seems to offer a promising avenue for modeling
music cognition which deserves further exploration.

                                                          
3 It might also be interesting to consider the probabilities of actual pieces or passages

according to the key-profile model. This would indicate the probability of a passage actually
being generated by the key-profile model—reflecting, perhaps, the “tonalness” of the
passage. (A similar, but less satisfactory, method of measuring this was proposed in [14].)

structure
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