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THIS STUDY EXAMINES THE DISTRIBUTIONAL VIEW OF

key-finding, which holds that listeners identify key by
monitoring the distribution of pitch-classes in a piece
and comparing this to an ideal distribution for each key.
In our experiment, participants judged the key of
melodies generated randomly from pitch-class distri-
butions characteristic of tonal music. Slightly more
than half of listeners’ judgments matched the generat-
ing keys, on both the untimed and the timed condi-
tions. While this performance is much better than
chance, it also indicates that the distributional view is
far from a complete explanation of human key identifi-
cation. No difference was found between participants
with regard to absolute pitch ability, either in the speed
or accuracy of their key judgments. Several key-finding
models were tested on the melodies to see which yielded
the best match to participants’ responses.
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H
OW DO LISTENERS IDENTIFY THE KEY OF A PIECE

as they hear it? This is surely one of the most
important questions in the field of music per-

ception. In tonal music, the key of a piece governs our
interpretation of pitches and chords; our understand-
ing of a note and its relations with other notes will be
very different depending on whether it is interpreted as
the tonic note (scale degree 1), the leading-tone (scale
degree 7), or some other scale degree. Experimental
work has shown that listeners’ perception of key affects
other aspects of musical processing and experience as
well. Key context affects the memory and recognition of
melodies (Cuddy, Cohen, & Mewhort, 1981; Cuddy,
Cohen, & Miller, 1979; Marvin, 1997), conditions our
expectations for future events (Cuddy & Lunney, 1995;
Schmuckler, 1989), and affects the speed and accuracy

with which notes can be processed (Bharucha &
Stoeckig, 1986; Janata & Reisberg, 1988). For all of these
reasons, the means whereby listeners identify the key of
a piece is an issue of great interest.

Several ideas have been proposed to explain how lis-
teners might identify key. One especially influential
view of key-finding is what might be called the distribu-
tional view. According to this view, the perception of
key depends on the distribution of pitch-classes in the
piece. Listeners possess a cognitive template that rep-
resents the ideal pitch-class distribution for each
major and minor key; they compare these templates
with the actual pitch-class distribution in the piece
and choose the key whose ideal distribution best matches
that of the piece. While this idea has had numerous
advocates, the distributional approach to key perception
has had many critics as well. Some musicians and music
theorists (in our experience) find the distributional
view implausible, because it seems so unmusical and
“statistical,” and ignores all kinds of musical knowledge
that we know to be important—knowledge about con-
ventional melodic patterns, cadential gestures, implied
harmonies, large-scale melodic shape, and so on. Critics
of the distributional approach have argued that key
perception depends crucially on pitch ordering and on
the intervallic and scale-degree patterns that pitches
form. We might call this general view of key-finding
the structural view, as it claims a role for musical struc-
ture in key perception beyond the mere distribution of
pitch-classes.

How can we test whether listeners use a distributional
approach or a structural approach to key identification?
In real music, both distributional and structural cues
are present: the key may be identifiable by distribu-
tional means, but no doubt there are also structural
cues that could be used to determine the key. Thus real
music can tell us little about which strategy listeners are
using. To answer this question, we would need to test
listeners’ key perceptions in musical stimuli designed to
match the pitch-class distributions of each key but
without any structural cues, or conversely, in stimuli
that feature structural cues suggestive of a particular
key but lacking the appropriate pitch-class distribution
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for that key. In the current study, we take the former
approach: we examine listeners’ perception of key in
melodies generated randomly from pitch-class distri-
butions drawn from a classical music corpus. Since the
keys of such melodies are (presumably) not reliably
indicated by structural cues, a high rate of success in
key identification will suggest that listeners are using a
distributional approach.

Previous Studies of Key Identification

The modeling of key identification has been an active
area of research for several decades. Perhaps the first
attempt in this area was the monophonic key-finding
model of Longuet-Higgins and Steedman (1971).
Longuet-Higgins and Steedman’s model processes a
melody in a left-to-right fashion; at each note, it elimi-
nates all keys whose scales do not contain that note.
When only one key remains, that is the chosen key. If
the model gets to the end of the melody with more
than one key remaining, it chooses the one whose tonic
is the first note of the melody, or failing that, the one
whose dominant is the first note. If at any point all keys
have been eliminated, the “first-note” rule again
applies. In a test using the 48 fugue subjects of Bach’s
Well-Tempered Clavier, the model identified the correct
key in every case. However, it is not difficult to find cases
where the model would encounter problems. In “The
Star-Spangled Banner,” for example (Figure 1a), the first
phrase strongly implies a key of Bb major, but the
model would be undecided between Bb major, F major,
and several other keys in terms of scales; invoking the
first-note rule would yield an incorrect choice of F
major. Another problem for the model concerns chro-
matic notes (notes outside the scale); the traditional
melody “Ta-ra-ra-boom-de-ay” (Figure 1b) clearly
conveys a tonal center of C, but the presence of the
chromatic F# and D# would cause the model to elimi-
nate this key. These examples show that key identifica-
tion, even in simple tonal melodies, is by no means a
trivial problem.

An alternative approach to key-finding is a procedure
proposed by Carol Krumhansl and Mark Schmuckler,
widely known as the Krumhansl-Schmuckler (hereafter
K-S) key-finding algorithm and described most fully in
Krumhansl (1990). The algorithm is based on a set of
“key-profiles,” first proposed by Krumhansl and Kessler
(1982), representing the stability or compatibility of
each pitch-class relative to each key. The key-profiles are
based on experiments in which participants were played
a key-establishing musical context such as a cadence or
scale, followed by a probe-tone, and were asked to judge
how well the probe-tone “fit” given the context (on a
scale of 1 to 7, with higher ratings representing better
fitness). Krumhansl and Kessler averaged the rating
across different contexts and keys to create a single
major key-profile and minor key-profile, shown in
Figure 2 (we will refer to these as the K-K profiles). The
K-K key-profiles reflect some well accepted principles
of Western tonality, such as the structural primacy of
the tonic triad and of diatonic pitches over their chro-
matic embellishments. In both the major and minor
profiles, the tonic pitch is rated most highly, followed by
other notes of the tonic triad, followed by other notes of
the scale (assuming the natural minor scale in minor),
followed by chromatic notes.

Given these key-profiles, the K-S algorithm judges the
key of a piece by generating an “input vector”; this is,
again, a twelve-valued vector, showing the total dura-
tion of each pitch-class in the piece. The correlation is
then calculated between each key-profile vector and the
input vector; the key whose profile yields the highest
correlation value is the preferred key. The use of corre-
lation means that a key will score higher if the peaks of
its key-profile (such as the tonic-triad notes) have high
values in the input vector. In other words, the listener’s
sense of the fit between a pitch-class and a key (as
reflected in the key-profiles) is assumed to be highly
correlated with the frequency and duration of that
pitch-class in pieces in that key.

The K-S model has had great influence in the field of
key-finding research. One question left open by the
model is how to handle modulation: the model can
output a key judgment for any segment of music it is
given, but how is it to detect changes in key?
Krumhansl herself (1990) proposed a simple variant of
the model for this purpose, which outputs key judg-
ments for each measure of a piece, based on the algo-
rithm’s judgment for that measure (using the basic K-S
algorithm) combined with lower-weighted judgments
for the previous and following measures. Other ways of
incorporating modulation into the K-S model have also
been proposed (Huron & Parncutt, 1993; Schmuckler &
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FIGURE 1. (A) “The Star-Spangled Banner.” (B) “Ta-ra-ra-boom-de-ay.”
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Tomovski, 2005; Shmulevich & Yli-Harja, 2000; Tem-
perley, 2001; Toiviainen & Krumhansl, 2003). Other
authors have presented models that differ from the K-S
model in certain respects, but are still essentially distri-
butional, in that they are affected only by the distribu-
tion of pitch-classes and not by the arrangement of
notes in time. In Chew’s (2002) model, pitches are
located in a three-dimensional space; every key is given
a characteristic point in this space, and the key of a pas-
sage of music can then be identified by finding the
average position of all events in the space and choosing
the key whose “key point” is closest. In Vos and Van
Geenen’s (1996) model, each pitch in a melody con-
tributes points to each key whose scale contains the
pitch or whose I, IV, or V7 chords contain it, and the
highest scoring key is the one chosen. Yoshino and Abe’s
(2005) model is similar to Vos and Van Geenen’s, in
that pitches contribute points to keys depending on
their function within the key; temporal ordering is
not considered, except to distinguish “ornamental”
chromatic tones from other chromatic tones. Finally,
Leman’s (1995) model derives key directly from an

acoustic signal, rather than from a representation
where notes have already been identified. The model is
essentially a key-profile model, but in this case the
input vector represents the strength of each pitch-class
(and its harmonics) in the auditory signal; key-profiles
are generated in a similar fashion, based on the frequency
content of the primary chords of each key.

Temperley (2007) proposes a distributional key-
finding model based on probabilistic reasoning. This
probabilistic model assumes a generative model in
which melodies are generated from keys. A key-profile
in this case represents a probability function, indicating
the probability of each scale-degree given a key. Such
key-profiles can be generated from musical corpora; the
profiles in Figure 3 are drawn from the openings of
Mozart and Haydn string quartet movements (these
profiles are discussed further below). Given such key-
profiles, a melody can be constructed as a series of notes
generated from the key-profile. The probability of the
melody given a key, P(melody | key), is then the product
of all the probabilities (key-profile values) for the indi-
vidual notes. For example, given the key of C major, the
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FIGURE 2. Key-profiles for major keys (above) and minor keys (below). From Krumhansl and Kessler (1982).
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probability for the melody C-F#-G (scale degrees 
1-#4-5) would be .223 × .019 × .189 = .00080.

A basic rule of probability, Bayes’ rule, then allows us
determine the probability of any key given the melody,
P(key | melody):

(1)

The denominator of the expression on the right,
P(melody), is just the overall probability of a melody
and is the same for all keys. As for the numerator, P(key)
is the “prior” probability of each key occurring. If we
assume that all keys are equal in prior probability, then
this, too, is constant for all keys (we discuss this
assumption further below). Thus 

P(key | melody) ∝ P(melody | key) (2)

P
P P

P
(key |melody) =

(melody | key) (key)

(mellody)

To identify the most probable key given a melody, then,
we simply need to calculate P(melody | key) for all 24
keys and choose the key yielding the highest value. This
model was tested on a corpus of European folk songs,
and identified the correct key in 57 out of 65 melodies.1
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FIGURE 3. Key-profiles generated from the string quartets of Mozart and Haydn, for major keys (above) and minor keys (below).

1The model described here is a somewhat simplified version of the
monophonic key-finding model described in Chapter 4 of Temperley
(2007). The model generates monophonic pitch sequences using fac-
tors of key, range, and pitch proximity, and can be used to model key-
finding, expectation, and other phenomena. The model used here
does not consider range and pitch proximity, but these factors have lit-
tle effect on the model’s key-finding behavior in any case (see Temper-
ley, 2007, Chapter 4, especially Note 6). As Temperley notes (pp. 79-81),
this approach to key-finding is likely to be less effective for polyphonic
music; treating each note as generated independently from the key-
profile is undesirable in that case given the frequent use of doubled
and repeated pitch-classes. For polyphonic music, Temperley pro-
poses instead to divide the piece into short segments and label each
pitch-class as “present” or “absent” within the segment. For melodies,
however, the approach of counting each note seems to work well.
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Despite the number of researchers who have embraced
the distributional approach to key-finding, not all have
accepted it. Some have suggested that distributional
methods neglect the effect of the temporal ordering of
pitches in key perception. Butler and colleagues (Butler,
1989; Brown, Butler, & Jones, 1994) have argued that
key detection may depend on certain “goal-oriented
harmonic progressions” that are characteristic of tonal
music. Butler et al. focus especially on tritones—what
they call a “rare interval”—becauses tritones occur only
between two scale degrees (4 and 7) within the major
scale, whereas other intervals occur more often,
between multiple scale degrees (e.g., an ascending per-
fect fourth may be found between scale degrees 1 to 4, 2
to 5, 3 to 6, 5 to 1, 6 to 2, and 7 to 3). Butler et al. also
argue that the ordering of the notes of the tritone is
important: a tritone F-B implies a tonal center of C
much more strongly than B-F. Similarly, Vos (1999) has
argued that a rising fifth or descending fourth at the
beginning of a melody can be an important cue to key.
These arguments are examples of what we earlier called
a “structural” view of key perception. In support of
such a view, some experiments have shown that the
ordering of pitches does indeed have an effect on key
judgments. Brown (1988) found, for example, that
the pitches D-F#-A-G-E-C# elicited a strong prefer-
ence for D major, whereas the sequence C#-D-E-G-A-F#
was more ambiguous and yielded a judgment of G major
slightly more often than D major (see also Auhagen,
1994; Bharucha, 1984; West & Fryer, 1990). Similarly,
Matsunaga and Abe (2005) played participants tone
sequences constructed from the pitch set {C, D, E, G, A, B}
played in different orders. They found that the ordering
affected key judgments, with certain orderings eliciting
a strong preference for C major, some for G major, and
some for A minor.2

While the studies of Brown (1988), Matsunaga and
Abe (2005), and others might be taken to support the
structural view of key perception, it would be a mistake
to interpret them as refuting the distributional view
altogether. For one thing, the sequences used in these
studies are all extremely short; one might argue that

such short sequences hardly provide listeners with
enough “evidence” for a distributional strategy to be
applied. Moreover, in some cases, the pitch sets used are
deliberately constructed to be distributionally ambigu-
ous. For example, the set {C, D, E, G, A, B} is fully con-
tained in both the C major and G major scales, and also
contains all three tonic triad notes of these two keys.
The fact that structural cues are used by listeners in
such ambiguous situations may have little relevance to
real music, where distributional information generally
provides more conclusive evidence as to key. We should
note, also, that the “structural” view of key perception
has yet to be worked out as a testable, predictive theory.
It remains possible, however, that key perception
depends significantly on the detection of certain struc-
tural musical patterns or on a combination of structural
and distributional strategies.

As noted earlier, this question is difficult to resolve
using real music, where both distributional and struc-
tural cues tend to be present. A better way to examine
the role of distributional information would be to use
melodies generated randomly from typical pitch-class
distributions for different keys. In such melodies, the
key would be indicated by the distribution, but it
would presumably not be indicated by structural cues
that depend on a particular temporal arrangement of
pitches, such as a particular ordering of an interval, an
implied harmonic progression, or the occurrence of
certain scale degrees at particular points in the melody.
If listeners are indeed relying on such structural cues,
they may be unable to determine the underlying key
and may even be misled into choosing another key.

Before continuing, we should briefly summarize other
relevant studies that have explored listeners’ sensitivity to
pitch-class distribution. Several studies have employed a
probe-tone methodology using musical materials quite
different from those of Western tonal music. In a study by
Castellano, Bharucha, and Krumhansl (1984), American
participants were played passages of classical Indian
music; probe-tone methods were used to see whether
the responses reflected the distribution of pitch-classes
in the input. Similarly, Oram and Cuddy (1995) and
Creel and Newport (2002) did probe-tone studies using
melodies generated from artificial pitch-class distribu-
tions designed to be very dissimilar to any major or
minor scale. In all three of these studies, listeners’
responses were highly correlated with the pitch-class
distribution of the input—with tones occurring more
frequently in the context being given higher ratings—
suggesting that listeners are indeed sensitive to pitch-
class distribution. We should not take these studies to
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2One model that does not fit neatly into our structural/distribu-
tional taxonomy is Bharucha’s (1987) neural-network model. This
model consists of three levels of interconnected units representing
pitches, chords, and keys; sounding pitches activate chord units
which that in turn activate key units. The model is similar to distrib-
utional models in that it takes no account of the temporal ordering
of pitches (except insofar as the activation of units decays gradually
over time); however, the effect of pitches is mediated by the chords
that contain them.
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indicate that probe-tone responses in general are
merely a reflection of the frequency of tones in the con-
text (we return to this point below). But they do show
that listeners are sensitive to pitch-class distribution,
and this suggests that they might use distributional
information in key identification as well.

A study by Smith and Schmuckler (2004) investigated
the role of distributional information in key-finding. In
this study, probability distributions were created using
the Krumhansl-Kessler profiles, either in their original
form or with the profile values raised to various expo-
nents (in order to increase the degree of differentiation
between tones in the profile). These distributions were
used to control both the duration and the frequency of
occurrence of pitches, which were then randomly
ordered. Thus the experiment tested participants’ abil-
ity to use distributional cues in the absence of structural
ones. Participants were played these melodies, and their
perceptions of key were measured using a probe-tone
methodology. Profiles representing their responses were
created, and these were correlated with Krumhansl and
Kessler’s probe-tone profiles. A high correlation with
the K-K profile of a particular key was taken to indicate
that participants heard the melody in that key. The
authors found that listeners’ judgments did indeed
reflect perception of the correct key, especially when the
key-profiles used to generate the melodies were raised
to high exponents. The authors found that the total
duration of each pitch-class in the melody is important;
increasing the number of events of a certain pitch-class
but making them shorter (so that the total duration of
each pitch-class is the same) does not result in a clearer
perception of tonality for the listener.

Smith and Schmuckler’s (2004) study seems to point
to a role for distributional information in key percep-
tion. However, it is open to two possible criticisms. The
first concerns the fact that participants’ judgments of
key were measured by gathering probe-tone responses
and correlating these with the original K-K profiles.
This is a highly indirect method of accessing key judg-
ments (see Vos, 2000, for discussion). It is true that
probe-tone studies using a wide variety of tonal con-
texts have yielded quite consistent responses (Cuddy,
1997; Krumhansl, 1990); this suggests that probe-tone
profiles are, indeed, a fairly reliable indicator of key
judgments. But it is still possible that probe-tone
responses are affected by the precise context that is
used, at least to some extent. An alternative method,
which has been used in some earlier studies of key per-
ception (Brown, 1988; Cohen, 1991; Matsunaga & Abe,
2005), is to ask participants to report their key judg-
ments directly. This “direct” method is impractical with

untrained participants, who may be unable to articulate
their knowledge of key, but with trained participants—
as will be used in this study—this problem does not
arise.

A second criticism concerns Smith and Schmuckler’s
(2004) analysis of their data. The authors indicate that,
in some conditions at least, listeners’ probe-tone
responses to distributional melodies were highly corre-
lated with the K-K profile for the correct key. But they
do not indicate whether the K-K profile of the correct
key was the most highly correlated with the probe-tone
responses. If the profile of the correct key matched
the probe-tone responses better than any other, this
might be taken to indicate that the participants had
judged the key correctly; but this information is not
given. Thus, the results remain inconclusive as to
whether listeners can judge key based on distributional
information alone.3

In this study, we present an experiment similar to that
done by Smith and Schmuckler (2004), but with three
differences. First, the probability distributions used to
create our melodies were generated from a musical cor-
pus, rather than from experimental perception data (as
in Smith and Schmuckler’s study). Second, we meas-
ured participants’ intuitions about key using explicit
key judgments, rather than using the more indirect
probe-tone method. Third, we measure the influence of
pitch-class distribution on listeners’ responses by look-
ing at the proportion of key judgments that matched
those predicted by the pitch-class distribution. In so
doing, we compare several different distributional
models of key-finding, to see which one achieves the
best fit with the participants’ responses. We consider the
Krumhansl-Schmuckler model, Temperley’s probabilis-
tic model (described above), and several variants of the
probabilistic model.

Finally, we examine the question of whether absolute
pitch (AP) possession aids or hinders key-finding in
distributional melodies. In general, the perception of
key is assumed to be relative, not absolute. Most listeners
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3We should note also that the distributions used to generate the
melodies in Smith and Schmuckler’s (2004) study were based on the
K-K profiles. Since these profiles are drawn from perception data,
one might question whether they really reflect the distribution of
tones in tonal music. It is clear that the K-K profiles are qualitatively
very similar to pitch-class distributions in tonal music—a compari-
son of Figures 2 and 3 demonstrates this. Quantitatively, they are not
so similar (even when normalized to sum to 1), as the values for
chromatic pitches are much too high; some kind of nonlinear scaling
is needed to adjust for this, as seen in Smith and Schmuckler’s study.
An alternative approach would be to generate the melodies using dis-
tributions drawn from actual music, as we do in the current study.

Music2503_02  1/9/08  2:24 PM  Page 198



cannot listen to a melody and say “that is in C major”;
rather, they identify the key by recognizing that a par-
ticular note is the tonic pitch and that the melody is in
major or minor. A small fraction of the population—
those with absolute pitch—are able to identify pitches
(and therefore keys) in absolute terms (for an overview,
see Levitin & Rogers, 2005; Takeuchi & Hulse, 1993;
Terhardt & Seewann, 1983). Based on earlier research on
absolute pitch (Marvin, 1997), we hypothesized that par-
ticipants with absolute pitch might differ in their key-
finding strategy from those with relative pitch—perhaps
identifying key in a more deliberate and methodical
way, even explicitly counting pitches to determine a dis-
tribution. To test this, we grouped participants according
to their absolute pitch ability, and tested the groups in
both “timed” and “untimed” conditions. In Experiment 1
(the untimed condition), participants heard the entire
melody and then made a key judgment; in Experiment 2
(the timed condition), they stopped the melody when
they felt they had identified the key, and then reported
their judgment. The stimuli in Experiments 1 and 2
were different, but were generated by the same algo-
rithm. Our hypothesis was that listeners with absolute
pitch might use a more deliberate “counting” strategy to
determine the key, and therefore might take more time
to reach a judgment than those with relative pitch.

Method

Participants

Data are reported here for 30 participants (18 male, 12
female) with a mean age of 19.08 years (SD = 0.97), who
volunteered to take part in both experiments and were
paid $10 for participating. All were undergraduate
music students at the Eastman School of Music of the
University of Rochester. Participants began studying a
musical instrument at a mean age of 7.65 years (SD =
3.57), and thus had played for more than 11 years. All
participants had completed at least one year of colle-
giate music theory study. Twenty-one participants iden-
tified themselves as Caucasian, seven as Asian, one as
Hispanic, and one as African-American.

Although we initially asked participants to report
their status as AP or non-AP listeners, we administered
an AP posttest to all participants to confirm. Interest-
ingly, the distribution of scores was trimodal, with
high- and low-scoring groups and a distinct group of
scores in the middle. Based on the distribution of
scores, those who scored 85% or higher (M = 97%, n = 12)
we classified as AP; those who scored 25% or lower (M
= 10%, n = 11) we classified as non-AP; and participants

with scores between 40% and 60% (M = 53%, n = 7),
we classified as “quasi-AP.” Of the seven quasi-AP par-
ticipants, two self-identified as AP, two as non-AP, and
three as quasi-AP.4 AP participants began their instru-
mental training at age 6.2 years, non-AP at 8.8 years,
and quasi-AP at 8.1 years. All seven Asian participants
placed either in the AP or quasi-AP group, and the
first language of five of the seven was Mandarin, Can-
tonese, or Korean (see Deutsch, Henthorn, Marvin, &
Xu, 2006; Gregersen, Kowalsky, Kohn, & Marvin,
2001). Of the AP and quasi-AP participants, all but
two played a keyboard or string instrument. Of the
non-AP participants, none played a keyboard instru-
ment, two played a string instrument, and one was a
singer; the majority (n = 7) played woodwind and
brass instruments.

Apparatus

Two experiments were administered individually to
participants in an isolated lab using a custom-designed
program in Java on an iMac computer, which collected
all responses and timings for analysis. All participant
responses were made by clicking on-screen note-
name buttons with the mouse. Stimuli were presented
via BeyerDynamic DT770 headphones, and participants
had an opportunity to check note names on a Kurzweil
PC88mx keyboard next to the computer before complet-
ing each trial. Before beginning the experiment, partici-
pants were given an opportunity to adjust the loudness of
sample stimuli to a comfortable listening level.

Stimuli

Simuli for both experiments consisted of melodies gen-
erated quasi-randomly from scale-degree distributions.
The distributions were created from a corpus consisting
of the first eight measures of each of the string quartet
movements by Mozart and Haydn.5 The pitches of each
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4Responses for three of the “quasi-AP” participants, when asked
whether they had AP, were “sort of” and “I don’t think so, but my
teaching assistant does.” One quasi-AP bassoon player wrote that he
has AP only for the “bottom half of the piano.”

5The corpus was taken from the Musedata archive (www.musedata.
org). The archive contains the complete string quartets of Mozart (78
movements) and Haydn (232 movements) encoded in so-called
“Kern” format (Huron, 1999), representing pitches, rhythms, bar
lines, key symbols (indicating the main key of each movement), and
other information. It was assumed that very few of the movements
would modulate before the end of the first eight measures; thus, in
these passages, the main key of the movement should also generally
be the “local” key.
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8-measure passage were converted into scale degrees in
relation to the main key of the movement. A scale-
degree profile, showing the proportion of events of each
scale degree, was then created for each passage. (These
profiles reflected only the number of events of each scale
degree, not their duration.) The profiles of all major-
key passages were averaged to create the major key-
profile (giving each passage equal weight), and the same
was done for minor-key passages. This led to the pro-
files shown in Figure 3. It can be seen that the profiles in
Figure 3 are qualitatively very similar to the Krumhansl-
Kessler profiles shown in Figure 2 (recall that the K-K
profiles were generated from experimental probe-tone
data). Both profile sets reflect the same three-level hier-
archy of tonic-triad notes, scalar notes, and chromatic
notes. (One difference is that in the minor-key Mozart-
Haydn profile, 7 has a higher value than b7, while in the
Krumhansl-Kessler profiles the reverse is true; thus the
Mozart-Haydn profiles reflect the “harmonic minor”
scale while the K-K profiles reflect the “natural minor.”) 

The profiles in Figure 3 were used to generate scale
degrees in a stochastic fashion (so that the probability
of a scale degree being generated at a given point was
equal to its value in the key-profile). Each melody was
also assigned a randomly chosen range of 12 semi-
tones (within an overall range of A3 to G5), so that
there was only one possible pitch for each scale degree.
Using this procedure, we generated 66 melodies (30 for
each experiment, and six additional for practice trials),
using all 24 major and minor keys, each one 40 notes in
length. Figure 4 shows two of the melodies, generated
from the key-profiles for C Major and C minor. The
melodies were isochronous, with each note having a dura-
tion of 250 ms, and were played using the QuickTime
7.1.2 piano timbre.

Stimuli for the AP posttest were those of Deutsch,
Henthorn, Marvin, and Xu (2006), used with permis-
sion. Participants heard 36 notes spanning a three-
octave range from C3 (131 Hz) to B5 (988 Hz). The
notes were piano tones generated on a Kurzweil synthe-
sizer and played via computer MP3 file. To minimize
the use of relative pitch as a cue, all intervals between
successively presented notes were larger than an octave.6

Procedure

Participants took part in two experiments in a single
session, with a rest between. Before each experiment,
participants heard three practice trials and were given
an opportunity to ask questions and adjust the volume;
no feedback was given. In Experiment 1, participants
heard 30 melodies as described above; the computer
program generated a new random order for each par-
ticipant. Pacing between trials was determined by the
participant, who clicked on a “Play” button to begin
each trial. After hearing each stimulus melody, the par-
ticipant was permitted (but not required) to sing or
whistle his/her inferred tonic and then to locate this
pitch on the keyboard in order to determine the pitch
name. (This step was largely unnecessary for AP partic-
ipants, but they were given the same opportunity to
check their pitch names at the keyboard.) Participants
then clicked on one of 12 buttons (C, C#/Db, D, D#/Eb,
E, and so on) to register their tonic identification. A sec-
ond screen asked them to click on “major” or “minor” to
register the perceived mode of the melody. Experiment 2
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FIGURE 4. Two melodies used the experiments. Melody A, with a generating key of C major, was used in Experiment 1; Melody B, with a generating
key of C minor, was used in Experiment 2.

6In scoring the AP posttest, we permitted no semitone deviations
from the correct pitch label, as is sometimes done in scoring such
tests.
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was identical in format, except that the participants heard
30 new melodies (generated in the same manner), and
were urged to determine the tonic and mode as quickly as
possible. When the participant could sing or hum a tonic,
he/she clicked on a button that stopped the stimulus and
a response time was collected at that point. Then extra
time could be taken with the keyboard to determine the
note name and enter the participant’s response.

After the two experiments, participants took an AP
posttest. Pitches were presented in three blocks of
twelve, with 4-s intervals between onsets of notes
within a block, and 30-s rest periods between blocks.
Participants were asked to write the letter name of each
pitch on a scoring sheet (no octave designation was
required). The posttest was preceded by a practice block
of four notes. No feedback was provided, either during
the practice block, or during the test itself. Students
were not permitted to touch the keyboard for the
posttest. Finally participants filled out a questionnaire
regarding their age, gender, training, and AP status, as
well as the strategies they employed in completing the
experimental tasks.

Results

The main question of interest in our experiments is the
degree to which participants’ key judgments accorded
with the keys used to generate the melodies—what we
will call the “generating” keys.7 Before examining this,
we should consider whether it is even possible to deter-
mine the generating keys of the melodies. This was
attempted using Temperley’s probabilistic key-finding
model, described earlier. Using the key-profiles taken
from the Haydn-Mozart corpus (the same profiles used
to generate the melodies), this model chose the generat-
ing key in all 60 melodies used in the experiment. This
shows that it is at least computationally possible to
identify the generating key in all the melodies of our
experiment using a distributional method.

Turning to the participant data, our 30 listeners each
judged the key of 60 melodies: 30 in Experiment 1
(untimed) and 30 in Experiment 2 (timed). This
yielded 900 data points for each of the two experiments

and 1800 data points in all. Comparing participants’
judgments to the generating keys, we found that .51
(SE = .03) of the judgments matched the generating key
in the untimed experiment and .52 (SE = .03) in the
timed experiment. For each participant, the mean pro-
portion correct was calculated, and these scores were
compared with a chance performance of 1/24 or 4.2%
(since there are 24 possible keys), using a one-sample 
t-test (two-tailed). We found performance to be much
better than chance on both the untimed experiment,
t(29) = 17.71, p < .0001, and the timed experiment,
t(29) = 14.89, p < .0001.

We then examined the amount of agreement between
participants. For each melody, we found the key that
was chosen by the largest number of participants—we
will call this the “most popular key” (MPK) for the
melody. The MPK judgments matched the generating
keys in 50 out of the 60 melodies.8 Overall, the MPK
judgments accounted for only 56.1% of the 1800 judg-
ments. This is an important result for two reasons. First,
it is surprisingly low: One might expect general agree-
ment in key judgments among our participants, who
are highly trained musicians. But with these melodies,
the most popular key choices only accounted for
slightly more than half of the judgments. We return to
this point later. Second, as we try to model listeners’
judgments in various ways, we should bear in mind that
no model will be able to match more than 56.1% of the
judgments in the data. (One cannot expect a model to
match 100% of participants’ judgments when the par-
ticipants do not even agree with each other.) 

As a second way of measuring agreement among lis-
teners, we calculated the Coefficient of Concentration
of Selection (CCS) for the responses to each melody
(Matsunaga & Abe, 2005). The CCS is a measure of the
level of agreement on a categorical response task, and is
defined as

CCS = (χ2/{N(K – 1)})1/2 (3)

where χ2 is the chi-square of the distribution of
responses, N is the number of responses, and K is the
number of response categories. The CCS varies between 0
(if responses are evenly distributed between all categories)
and 1 (if all responses are in the same category). For
our melodies, the CCS values ranged from .31 to 1.00;
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7We do not call them the “correct” keys, because the correct key of
a randomly generated melody is a problematic notion. Suppose the
generative model, using the key of C major, happened to generate
“Twinkle Twinkle Little Star” in F# major (F# F# C# C# . . . )—which
could happen (albeit with very low probability). Would this mean
that the correct key of this melody was C major? Surely not. It seems
that “correct” key of such a melody could only be defined as the one
chosen by listeners.

8To be more precise: In 48 of the 60 cases, there was a single most
popular key that was the generating key. In two other cases, two keys
were tied for most popular, but in both of these cases one of the two
keys was the generating key. For simplicity, we counted the generat-
ing key as the most popular key in those two cases.
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the average across our 60 melodies was .589.9 As a
comparison, Matsunaga and Abe (2005) provide CCS
values for the 60 six-note melodies used in their
experiment; the average CCS value for these melodies
was .52.

We then considered the question of whether posses-
sors of absolute pitch performed differently from other
listeners. With regard to matching the generating keys,
on the untimed experiment the AP participants
achieved an average score of .56 correct (SE = .051), the
quasi-AP participants achieved .42 (SE = .03), and the
non-AP participants achieved .51 (SE = .04); the differ-
ence between the groups was not significant, F(2, 27) =
2.29, p > .05. On the timed experiment, too, the mean
scores for the AP participants (M = .54, SE = .05), the
quasi-AP participants (M = .51, SE = .07), and the non-
AP participants (M = .49, SE = .05) did not significantly
differ, F(2, 27) = 0.21, p > .05. We then examined the
average time taken to respond on the timed experiment;
we had hypothesized that AP participants might use an
explicit counting strategy and therefore might take
longer in forming key judgments. The AP participants
showed an average time of 7.09 (SE = 0.34) seconds, the
quasi-AP participants yielded an average time of 7.45
(SE = 0.43) seconds, and the non-AP participants
yielded an average time of 7.16 (SE = 0.55) seconds. (On
average, then, the AP and non-AP participants heard
about 27 notes of each melody and the quasi-AP partici-
pants heard about 28 notes.) The difference between the
three groups was not significant, F(2, 27) = 0.14, p > .05.
Thus, we did not find any significant difference between
AP, quasi-AP, and non-AP participants with regard to
either the speed of their judgments or the rate at which
they matched the generating keys.

Discussion

The experiments presented above were designed to
examine whether listeners are able to identify the key of
a melody using distributional information alone. The
results suggest that listeners can, indeed, perform this
task at levels much greater than chance. This result was
found both in an untimed condition, where the com-
plete melody was heard, and in a timed condition,
where participants responded as quickly as possible.
However, only slightly more than half of participants’
judgments matched the generating key, both in the

timed and the untimed conditions. No significant dif-
ference in key-finding performance was found with
regard to absolute pitch.

One of our goals in this study was to test various dis-
tributional models of key-finding to assess how well
they matched listener judgments. In what follows, we
begin by examining the performance of the Temperley
probabilistic model described earlier; we then consider
several other models and variants of this model. One
issue to consider here is the distinction between timed
and untimed conditions. In the untimed condition, lis-
teners heard the entire melody before judging the key;
in the timed condition, they generally did not hear the
entire melody. (As noted above, participants on average
heard about 27 notes, or about two thirds, of the
melody in the timed condition. In only 199 of the timed
trials, or 22.1% of the total, did participants “run out
the clock” and hear the entire melody.) It seems ques-
tionable to compare the judgment of a model that had
access to the entire melody with that of a listener who
only heard part of the melody; on the other hand, par-
ticipants did hear most of the timed melodies, and
adding in the timed melodies provides a larger body of
data. For the most part, we focus here on the untimed
melodies, but in some cases we consider both untimed
and timed melodies; this will be explained further
below.

One simple way of testing a key-finding model
against our data is by comparing its key judgments to
the MPK judgments—the keys chosen by the largest
number of participants. We noted above that the
MPK judgments matched the generating key on 50
out of 60 melodies (considering both untimed and
timed melodies), and the Temperley probabilistic
model matched the generating key on all 60 melodies.
Thus the Temperley probabilistic model matches the
MPK judgments in 50 out of 60 melodies. On the
untimed melodies, the Temperley model matched 26
out of 30 MPK judgments. (See the first row of Table 1.)

We also considered two other measurements of how
well the model’s output matched the participants’ judg-
ments. One measure makes use of the fact that the
probabilistic model calculates a probability for each key
given the melody, the key with the highest probability
being the preferred key. The model’s probability for the
generating key, what we will call P(Kg), can be used as a
measure of the model’s “degree of preference” for that
key. The participants’ degree of preference for the gen-
erating key can be measured by the number of responses
that key received, or responses(Kg). If the probabilistic
model is capturing participants’ key judgments, then
the probability it assigns to the generating key should be
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9We also wondered if the CCS was lower on melodies for which the
MPK was not the generating key. For the 10 melodies on which
the MPK was not the generating key, the average CCS was .48; for
the other 50 melodies, the average CCS was .61.
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higher in cases where more participants chose that key.
One problem is that, for the 30 untimed melodies,
P(Kg) varies beween 0.98 and 0.9999999; the variation
in these numbers is not well captured either by a linear
scale or a logarithmic scale. A better expression for this
purpose is log(1– P(Kg)); if this value is low, that means
the model strongly preferred the generating key. (For
our melodies, this varies between a low of −17.55 and a
high of −4.01.) These values were calculated for each of
the untimed melodies; Figure 5 plots log(1 − P(Kg)
against responses(Kg) for each melody. The observed

relationship is in the predicted direction (in cases where
log(1 – P(Kg)) is lower, the generating key received more
responses); however, it is very small and statistically
insignificant (r = .24). Thus, by this measure, the Tem-
perley model does not fare very well in predicting par-
ticipants’ degree of preference for the generating key.

The two measures used so far both consider only the
most preferred keys of the model and the participants.
It would be desirable to compare the degree of prefer-
ence for lower-ranked keys as well. Here we use Spear-
man’s Rank Correlation, which correlates two rankings
for a set of items without considering the numerical
values on which those rankings were based. For each of
the untimed melodies, we used the log probabilities
generated by the Temperley probabilistic model for
each key, log(P(key | melody), to create a ranking of the
24 keys; we then used the participant data to create
another ranking, reflecting the number of votes each
key received (keys receiving the same number of votes
were given equal rank). For each melody, we calculated
the Spearman coefficient between these two rankings;
for the 30 untimed melodies, the average correlation
was .539.

Figure 6 shows two of the melodies in our experi-
ment, and Figure 7 shows data for them: the number of
votes for each key and the model’s probability judgment
for each key, log(P(key | melody). For the first melody
(with a generating key of D major), the participant
responses are fairly typical, both in the degree of partic-
ipant agreement (CCS = .50) and the number of votes
for the generating key (15). The second melody (with a
generating key of Eb minor) is the one that yielded the
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TABLE 1. Comparison of Key-Finding Algorithms.

No. of matches to Spearman correlation coefficient
No. of matches to MPKs (untimed between rankings of keys 

No. of matches to MPKs (untimed and timed by participants and 
generating keys condition only, conditions, model (averaged over

Model (60 melodies) 30 melodies) 60 melodies) 30 untimed melodies)

Probabilistic model (PM) 60 (100.0%) 26 (86.7%) 50 (83.3%) .54

PM with Essen profiles 58 (96.6%) 25 (83.3%) 48 (80.0%) .53

Krumhansl-Schmuckler model 49 (81.7%) 23 (76.7%) 43 (71.7%) .45

PM ignoring last 20 notes 52 (86.7%) 22 (73.3%) 45 (75.0%) .52

PM ignoring first 5 notes 59 (98.3%) 27 (90.0%) 51 (85.0%) .53

PM favoring major-mode keys 59 (98.3%) 25 (83.3%) 49 (81.7%) .53
(mf = .999)

“First-order” probabilistic model 56 (93.3%) 27 (90.0%) 49 (81.7%) .49

PM with profile value for tonic 59 (98.3%) 26 (86.7%) 51 (85.0%) .55
multiplied by 1000 on first note

FIGURE 5. The model’s degree of preference for the generating key of
each melody (log(1 − P(Kg)) (vertical axis) plotted against the number of
responses for that key (horizontal axis), for the 30 melodies in the
untimed experiment. 
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minimum number of votes for the generating key; this
key received only two votes. Comparing the model’s
judgments to the participant judgments for these two
melodies, we see that the fit is far from perfect; still,
there is clearly some correspondence, in that the peaks
in the participant data (the keys receiving votes) gener-
ally correspond to peaks in the model’s values, espe-
cially in the first melody. Perhaps the most striking
difference is that on the second melody, Bb major
received the highest number of participant votes (8) but
received a fairly low score from the model. The reason
for the model’s low score for Bb major is clear: there are
16 notes in the melody that go outside the Bb major
scale. As to why the participants favored Bb major, per-
haps the Bb major triad at the beginning of the melody
was a factor (though bear in mind that only 8 out of 30
participants voted for this key). We will return below to
the issue of what other factors besides pitch-class distri-
bution may have affected the participants’ judgments.

We now consider whether any other model can be
found that achieves a better “fit” to the participant data
than the Temperley probabilistic model. Table 1 shows
the results for various models. First we show the num-
ber of matches between the model’s judgments and the
generating keys (for untimed and timed melodies com-
bined). We then show the number of matches between
the model’s preferred keys and the MPK judgments.
(We give results for the 30 untimed melodies; since this
offers only a small body of data, we also give results for
the timed and untimed melodies combined.) Finally,
we show the Spearman correlation calculated between
the rankings of keys by the participants and the model
(for the untimed melodies only).

In considering alternatives to the Temperley proba-
bilistic model, we first wondered how much the model’s
judgments were affected by the specific key-profiles that
it used. To explore this, the model was run with a set of
profiles gathered from another corpus. The corpus used

was the Essen folksong database, a corpus of 6,200
European folk songs, annotated with pitch and rhyth-
mic information as well as key symbols.10 The Essen
profiles (shown in Figure 8) are very similar to the
Mozart-Haydn profiles (Figure 3), though with a few
subtle differences. (In the Essen profiles, b7 has a higher
value than 7 in minor, like the Krumhansl-Kessler pro-
files and unlike the Mozart-Haydn profiles.) Using the
Essen profiles, the model matched the generating keys
in 58 out of 60 cases (as opposed to 60 out of 60 with
the Mozart-Haydn profiles). Thus the model’s identifi-
cation of generating keys does not seem to depend
heavily on the precise values of the profiles that are used.
The model’s judgments when using the Essen profiles
matched the MPK judgments in 48 out of 60 cases. This
suggests that, in modelling listeners’ distributional
knowledge of tonal music, classical string quartets and
European folk songs are almost equally good, though
classical string quartets may be marginally better.

The next model tested was the Krumhansl-Schmuckler
model. As discussed earlier, the K-S model operates by
creating an “input vector” for the piece—a profile
showing the total duration of all 12 pitch-classes in the
piece; the correlation is calculated between this vector
and the 24 K-K key-profiles, and the key is chosen yield-
ing the highest correlation. Unlike the profiles of the
probabilistic model, which were set from a corpus of
music, the profiles of the K-S model were gathered from
experimental data on human listeners (Krumhansl,
1990).11 Thus, one might expect the K-S model to
match our participants’ judgments better than the
probabilistic model. In fact, however, the K-S model
yielded a poorer match to our listener data, matching
only 43 of the 60 MPK judgments. The K-S model also
fared worse at matching the generating keys; it matched
only 49 out of 60 generating keys, whereas the proba-
bilistic model matched all 60.

One suprising aspect of our experimental data is that
participants matched the generating key at almost the
same rate in the timed condition (where they made a
key judgment as soon as they were able) as in the
untimed condition (where they heard the entire melody).
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FIGURE 6. Two melodies used in the untimed experiment. 

10The Essen database is available at <http://kern.ccarh.org/cgi-bin/
ksbrowse?l=/essen/>. It was created by Schaffrath (1995) and compu-
tationally encoded in “Kern” format by Huron (1999).

11In fact, the participants in Krumhansl and Kessler’s (1982) study
were rather similar to those of our experiment, namely undergradu-
ates with high levels of music training. However, while Krumhansl
and Kessler’s subjects generally did not have training in music theory,
most of our participants had studied collegiate music theory for
three semesters and therefore did have some theory background.

A.

B.
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This suggested to us that perhaps participants were
using a distributional strategy, but basing their judg-
ment only on the first portion of the melody. In our
own experience of the melodies, too, we felt that we
sometimes gave greater weight to notes early in the
melody—perhaps forming a key judgment after just a
few notes and then fitting any subsequent notes into
that key framework. Thus, we reasoned that the fit of

the probabilistic model to the participants’ judgments
might be improved by simply running it on only the
first portion of the melody—ignoring the last n notes.
This approach was tried, for various values of n; how-
ever, no improvement in fit to the listeners’ responses
could be achieved in this way. Table 1 shows the results
for n = 20 (a number of other values were also tried).
Using only the first 20 notes of each melody, the model

Pitch-Class Distribution and Key Identification 205

FIGURE 7. Data for the melodies shown in Figure 6A (above) and Figure 6B (below). The solid line shows the number of votes for each key; the dot-
ted line shows the probabilistic model’s score for that key, log(P(key | melody). (The model’s scores have been normalized to allow comparison with
participant responses.)
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matched only 45 out of the 60 untimed and timed
MPKs, as opposed to 50 when the entire melody was
considered. We then tried ignoring notes at the begin-
ning of the melody—reasoning that perhaps partici-
pants gave greater weight to notes near the end. (An
effect of final position was observed by Creel & New-
port, 2002.) The model was modified to ignore the first
n notes, using various values of n. Again, little improve-
ment could be obtained. With n = 5 (ignoring the first 5
notes of the melody), the number of matches to the
MPKs on the combined untimed and timed melodies
increased from 50 to 51; other values of n resulted in
fewer matches. In short, there is little evidence that par-
ticipants considered only part of the melodies in making
their judgments; in general, the model seems to match
listeners’ judgments most closely when it considers the
entire melody.

Another issue concerns possible biases in the key judg-
ments. The probabilistic model used here assumes that
all keys are equal in prior probability; but this may not
be the assumption of listeners. Certainly some tonics are

more common than others—there are more pieces in C
major than in F# major, and generally, it seems clear that
“white-note” keys are more common than “black-note”
keys. Perhaps these prior probabilities are reflected in lis-
teners’ judgments. This possibility is of particular inter-
est with regard to AP participants. Other studies have
found a “white-note” bias in AP listeners with regard to
pitch identification—such listeners can identify white-
note pitches more rapidly than black-note pitches
(Marvin & Brinkman, 2000; Miyazaki, 1989, 1990;
Takeuchi & Hulse, 1991); we wondered if a similar bias
would affect their key judgments. (Although one might
not expect such a bias with non-AP listeners, Marvin
and Brinkman found that non-AP listeners also reflected
a white-note bias in pitch identification.) To address this
question, we examined the frequency of white-note versus
black-note key judgments, considering just the data from
the untimed experiment.

Out of the 30 melodies in the untimed experiment,
12 had generating keys with “black-note” tonics; thus,
if there was no bias, we would expect the proportion
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FIGURE 8. Key-profiles generated from the Essen Folksong Collection, for major keys (above) and minor keys (below).
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of responses for black-note tonics to be 12/30 = .4. For
the AP group, the actual proportion of responses for
black-note tonics (averaged across participants) was
exactly .4 (SE = .015), which obviously did not signifi-
cantly differ from the expected value, t(11) = 0.00, p >
.05. The proportion of responses for black-note tonics
for the quasi-AP and non-AP groups also did not differ
significantly from the expected value. Thus we find no
evidence for any bias towards white-note tonics.

We then considered whether listeners might have a
bias regarding mode. Again, it seems likely that major
mode is more common than minor mode in most tonal
styles, and this might affect listeners’ judgments. Out of
the 30 melodies in the untimed experiment, 15 had
minor-mode generating keys, thus we would expect the
proportion of votes for minor-mode keys to be .50. For
both the non-AP group and the AP group, the observed
proportion of votes for minor-mode keys was signifi-
cantly less than the expected value. For the non-AP
group, the mean was .397, SE = .035, t(10) = −2.95, p <
.05; for the AP group, the mean was .401, SE = .020,
t(11) = −4.62, p < .001. For the quasi-AP group, the
observed proportion was .529, not significantly differ-
ent from the expected value, t(6) = 0.56, p > .05. Com-
bining the three groups together, we find a mean
proportion of .431 (SE = .021) for minor-mode keys,
reflecting a significant bias towards major-mode keys,
t(29) = −3.27, p < .01.

We then tried incorporating this bias into the model.
Recall that our original expression for P(key | melody)
(equation 1) contained a factor representing the prior
probability of the key—P(key)—but that this was
assumed to be equal for all keys and therefore neglected.
We now assume that P(key) may be different for differ-
ent keys. The probability of each major key can be
expressed as mf/12, where mf (mode factor) is the prob-
ability of a major-mode form of a key. The probability
of the parallel minor is then (1–mf )/12; this ensures
that the probabilities for all 24 keys sum to 1. A high
value of mf (close to 1) would give major keys a higher
prior probability than minor keys. Various values of mf
were tried, but none yielded any improvement over the
original model in terms of matching the MPK judg-
ments. With mf = .9, the model matched 50 of the
untimed and timed MPKs (the same as the original
model); with mf = .999, it matched 49 of the MPKs.

We then considered a distributional model of a rather
different kind. Experiments have shown that listeners
are sensitive to transitional probabilities between adja-
cent surface elements, both in language and in music
(Saffran & Griepentrog, 2001; Saffran, Johnson, Aslin,
& Newport, 1999). We wondered if this was the case

with regard to key perception as well.12 Specifically, we
considered a generative model again based on the
Mozart-Haydn corpus, in which the probability of a
note Nn at a particular point depends on the key and on
the previous note, Nn − 1; the probability of an entire
melody is then the product of these probabilities over
all notes:

P(melody | key) = Πn P(Nn | Nn − 1, key) (4)

(One could call this a “first-order Markov model”—
conditional on the key—whereas our original model
was a “zeroth-order Markov model.”)13 Again, using
Bayesian logic, this expression is proportional to the
probability of a key given the melody. The probabilities
were set using the Mozart-Haydn corpus, by finding
the probabilities of all “scale-degree transitions”—
the probability of each scale degree, given the previous
scale degree (within the same line). In a sense, this could
be considered a kind of “structural” model, as it consid-
ers the ordering of notes (in a very limited way). In par-
ticular, it seemed that this model might improve the
model’s sensitivity to chromatic notes—notes outside
the scale, which almost invariably resolve by a half-step.
Incorporating scale-degree transitions gives the model
the ability to capture this convention; it should know,
for example, that a note that is not followed by half-step
is unlikely to be chromatic and almost certainly a note
of the scale.

As Table 1 shows, this “first-order” model once again
failed to yield any improvement over the original prob-
abilistic model. Considering both the timed and
untimed melodies, it matched the MPKs on 49 out of
the 60 melodies (though intriguingly, it got one point
more than the original model on the untimed melodies).
The model also performed worse than the original
model with regard to the generating keys, matching only
56 out of 60. Thus, we find that a probabilistic model
based on note transitions matches human judgements
of key no better than the original model.
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12Earlier attempts to incorporate such information into key-find-
ing models have had limited success. In particular, Toiviainen and
Krumhansl (2003) incorporated information about note transi-
tions—the probability of one note following another—into a distri-
butional model, but found that it yielded no improvement over the
Krumhansl-Schmuckler model. In that case, however, the transi-
tional information used was gathered from perception data regard-
ing the perceived “relatedness” of tones; in the present case, we set the
transitional probabilities based on a musical corpus.

13For the first note, the probability cannot be calculated in this
way, since there is no previous note; in this case, then, the “zeroth-
order” profiles were used.
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To gain further insight into participants’ key judg-
ments, we inspected the 10 melodies on which the MPK
judgment disagreed with the generating key, to see if any
other patterns emerged that might explain these judg-
ments. We hypothesized that the MPK tonic might tend
to be the last note of the melody; this was the case in only
4 of the 10 melodies. We also considered whether the
MPK tonic was the first note of the melody; this was the
case in 8 of the 10 melodies. This suggested that perhaps
participants were using a “first-note-as-tonic” cue. How-
ever, inspection of the other melodies showed that the
first note was the tonic of the most popular key on only
22 of the 60 melodies.14 (We also tried incorporating this
factor into the model, by giving it a special “first-note
key-profile” in which the tonic value was especially high.
This produced only a very slight improvement; as shown
in Table 1, multiplying the tonic profile value by 1000
yielded a gain of one point in matching the untimed and
timed MPKs.) We also examined the number of chro-
matic notes with respect to the MPK, thinking that per-
haps listeners simply chose the key that yielded the
minimum number of chromatic notes. But in 8 out of
the 10 melodies on which the MPK judgment differed
from the generating key, the number of chromatic notes

in relation to the MPK was actually higher than the
number in relation to the generating key. Thus we could
not find any convincing explanation for why the MPK
judgments might have differed from the generating key
on these 10 melodies.

Out of all of the models we tried, none achieved
more than a marginal improvement over the basic
probabilistic model. Further insight into this is pro-
vided by the Spearman correlation measures, shown in
Table 1; recall that these indicate the rank correlation
between the model’s “scores” for each key and the num-
ber of votes for that key in the participant data, averaged
over the 30 untimed melodies. (For the probabilistic
models, the score for each key is log(P(key | melody);
for the K-S model, it is the correlation value between
the K-K key-profile and the input vector.) The basic
probabilistic model yields a correlation of .539; the
only model that achieves any improvement at all over
this is the “first-note-as-tonic” model, which yields a
correlation of .548.

A final issue concerns the keys that participants chose
when they did not choose the generating key. One
might expect, in such cases, that the key chosen would
generally be closely related to the generating key. If we
examine the 10 cases where the MPK differed from the
generating key, we find that this is indeed the case (see
Table 2). In the 4 cases where the generating key was
major, the MPK was always either the major dominant
(2 cases), the major subdominant (1 case), or the rela-
tive minor (1 case); in the 6 cases where the generating
key was minor, the MPK was either the major domi-
nant (2 cases), relative major (2 cases), parallel major
(1 case), or minor dominant (1 case). The sample
melodies shown in Figures 6 and 7 offer some insight
into this as well; for both melodies, the most favored
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TABLE 2. Ten Melodies with Participant Responses.

Melody Generating Most popular Second most
(our code name) key key popular key CCS

mcsm1 C# Ab C# .55
mcsn1 C#m Ab C#m .42
mebn1 Ebm Bb Bbm .33
mebn2 Ebm F# B .46
me-m3 E B E .73
mabm3 Ab C# Ab .77
mbbm3 Bb Gm Eb .43
mcsn3 C#m Abm F#m/C#m (tie) .31
mabn3 Abm Ab Abm .32
mg-n4 Gm Bb Gm .49

14Some kind of “first-note” or primacy factor might also be sus-
pected in the second melody in Figure 6; that melody begins by out-
lining a Bb major triad, which was the subjects’ most favored key (see
Figure 7). But the tests reported here suggest that neither a model
which gives special weight to the first few notes of a melody, nor a
model which strongly favors the first note as tonic, yields an improved
fit to subjects’ key judgments. Despite these findings, the possibility of
some kind of first-note strategy cannot be ruled out. It may be, for
example, that listeners use a distributional strategy initially, but when
this yields an uncertain judgment they rely on a first-note strategy.
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keys are closely related to the generating key.15 A
complete analysis of participants’ key choices in relation
to the generating key would be of interest, but this
would lead us into the complex topic of key relations
(Krumhansl, 1990; Lerdahl, 2001) and is beyond the
scope of this study.

Conclusions

Three general conclusions emerge from our study. First,
when asked to determine the key of melodies generated
from pitch-class distributions—and without any inten-
tional “structural” cues—listeners perceive the generat-
ing key at better-than-chance levels but without high
levels of agreement. The most popular key choices
accounted for only slightly more than half of partici-
pants’ responses. Second, the behavior of participants
with absolute pitch on randomly generated melodies
appears to be very similar to that of non-AP partici-
pants. Finally, to the extent that the participants do
agree in their key judgments, the simple probabilistic
model proposed here matches their judgments quite
well—a number of alternative models and modifica-
tions to the model were tried, but none yielded better
performance. We discuss each of these findings in turn.

The low level of agreement among participants in our
experiment was quite surprising to us. We assume that
with real tonal melodies the level of agreement would
be much higher. The fact that there was such low agree-
ment on our melodies suggests to us that listeners were
often uncertain about their tonality judgments.16 In our
view, this finding casts serious doubt on the distribu-
tional view of key perception. One could argue that the
melodies were too short for listeners to get an adequate
“sample” of the distribution; with longer melodies, per-
haps listeners would identify the generating key more
reliably. But this argument seems unconvincing. For
one thing, the probabilistic model was able to identify
the generating key on all 60 melodies, showing that it is
at least possible to identify the key in melodies of this
length. Second, many tonal melodies are as short or
shorter than 40 notes—for example, “Mary Had a Little
Lamb” has 26 notes and “Twinkle Twinkle Little Star” has
42 notes. Listeners seem to have no trouble identifying

the tonality in such melodies. Our random melodies
seem to lack important cues to tonality—presumably,
structural cues of some kind—that are present in real
tonal music.

If listeners use other cues besides distribution to
identify tonality, what might those cues be? Here, we
encounter a problem mentioned earlier: Proponents of
the structural view of key-finding have so far failed to
advance any robust, testable key-finding model. The
structural cues that have been proposed are, in them-
selves, hardly adequate for a key-finding algorithm.
Vos’s idea (1999) that an opening ascending fourth or
descending fifth is an important cue fails to accommo-
date the many melodies that do not start with these
intervals. Similarly, Butler’s (1989) proposal about tri-
tone ordering is weakened by the fact that many well-
known melodies do not contain “fa-ti” tritones.
(“Twinkle Twinkle Little Star” and “Mary Had A Little
Lamb” are two examples of melodies that contain nei-
ther an ascending-fourth/descending-fifth opening
nor any fa-ti tritones.) These proposals also do not
specify how listeners distinguish parallel major and
minor keys, which would share the same “fa-ti” tritone
and “sol-do” ascending fourth/descending fifth. Our
data also gives little support for these particular inter-
vals as key-defining cues. We examined the 10 melodies
in which the generating key was not the most popular
key, to see whether these proposed structural cues
explained listeners’ judgments. In no case did the
melody begin with an ascending fourth or descending
fifth in the most popular key. In only two melodies was
there a “fa-ti” tritone (as a pair of consecutive notes) in
the most popular key. Thus it does not appear that these
cues are essential for key identification—though they
may play a small role, perhaps in nonconsecutive
pitches or in combination with other structural cues.

Turning to our second conclusion, our study found
no difference in key-finding performance with regard
to absolute pitch. The AP, quasi-AP, and non-AP groups
were almost the same in the level at which their judg-
ments matched the generating key; they also did not
significantly differ with regard to the time taken to form
a key judgment on the timed experiment. None of the
three AP groups—AP, quasi-AP, or non-AP—showed
any bias towards white-note tonics over black-note ton-
ics; both the AP and non-AP groups (though not the
quasi-AP group) showed a slight and significant bias
towards major-mode keys. Thus, AP and non-AP lis-
teners seem very similar in their use of distributional
information in key-finding.

Finally, despite the rather low level at which our par-
ticipants’ key judgments matched the generating keys,
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15Table 2 also shows the subject’s second most popular key for each
melody. It can be seen that, in 6 of the 10 cases, the second-most pop-
ular key was the generating key.

16If that is the case, one might wonder why participants usually
stopped the melody before it ended on the timed experiment. But
this may be because they thought they were supposed to stop the
melody before it ended.

Music2503_02  1/9/08  2:24 PM  Page 209



it seems clear that they made some use of pitch-class
distribution in their key judgments. The match between
participants’ judgments and the generating keys was
much greater than chance. Thus, while pitch-class dis-
tribution does not completely determine key identifi-
cation, it is at least part of the story. A question then
arises as to how this distributional component of key
perception can best be modeled. We first tried a very
simple probabilistic model, first proposed in Temperley
(2007); this model matched the participants’ most pop-
ular judgments on 83.3% of our melodies. Attempts to
improve the probabilistic model’s performance—by
ignoring a segment of the melody at the beginning or
end, incorporating a bias for major-mode keys, consid-
ering scale-degree “transitions,” and adding a bias
towards interpreting the first note as tonic—all failed to
produce any significant improvement over the origi-
nal model. The probabilistic model also outperformed
the Krumhansl-Schmuckler model. (We should bear
in mind, however, that the K-S model was really the
“original” distributional model of key-finding and
the inspiration for Temperley’s probabilistic model;
indeed, one might well regard the probabilistic model
simply as a variant of the K-S model.) Thus, in model-
ing the distributional component of key identification,
the simple probabilistic model proposed here works
remarkably well and further improvement is difficult
to achieve.

So what can we conclude about the distributional view
of key-finding? This is, in a sense, a question of whether
the glass is half empty or half full. On the one hand,
pitch-class distribution is clearly one component of key

identification; and this component can be modeled quite
well by a simple probabilistic model. On the other
hand, the fact that only slightly more than half of our
participants’ key judgments matched the predictions of
the distributional view suggests that there is much more
to key identification than pitch-class distribution. It
seems clear that structural cues of some kind—cues
relating to the ordering and temporal arrangement of
pitches—play a role in key perception. Current propos-
als, however, are hardly adequate in describing what
these structural factors might be. Clearly, one of the
challenges for future research will be to characterize
more adequately the structural factors that affect listen-
ers’ perception of key, and to incorporate these factors
into predictive, testable models.

Author Note
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used in our experiments. Benjamin Anderson, Sara Bal-
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