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MODELING COMMON-PRACTICE RHYTHM

Davip TEMPERLEY
Eastman School of Music

THIS STUDY EXPLORES WAYS OF MODELING the compo-
sitional processes involved in common-practice rhythm
(as represented by European classical music and folk
music). Six probabilistic models of rhythm were evalu-
ated using the method of cross-entropy: according to
this method, the best model is the one that assigns the
highest probability to the data. Two corpora were used:
a corpus of European folk songs (the Essen Folksong
Collection) and a corpus of Mozart and Haydn string
quartets. The model achieving lowest cross-entropy was
the First-Order Metrical Duration Model, which chooses
a metrical position for each note conditional on the posi-
tion of the previous note. Second best was the Hierarchical
Position Model, which decides at each beat whether or
not to generate a note there, conditional on the note sta-
tus of neighboring strong beats (i.e., whether or not they
contain notes).When complexity (number of parame-
ters) is also considered, it is argued that the Hierarchical
Position Model is preferable overall.
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IGURE 1 SHOWS TWO RHYTHMIC PATTERNS. ONE IS
Ffrom a classical-period piece; the other is a hypo-
thetical pattern, not from any piece. It will probably
be clear that the first of the two patterns is the classical
one (in fact, it is from the opening melody of the third
movement of Mozart’s piano sonata K. 333; see Figure 3).
The fact that we are able to distinguish a classical rhythm
from a non-classical one suggests that classical rhythms
are characterized by general principles; and it seems rea-
sonable to suppose that these principles were operating,
in some form, in the minds of classical composers. This
raises the question: what are these general principles?
That is, what is (was) the nature of the musical knowledge
that led classical composers to write certain rhythmic
patterns and not others?

Figure 2 shows a second pair of rhythmic patterns. One
is from a classical piece; the other is from a European
folk song. In this case, identifying the classical rhythm is
probably more difficult (in fact, it is the second one; see
Figure 3). This illustrates a second point: The rhythmic
practice of the classical period has much in common
with that of a range of other musical styles: Western art
music from earlier (Baroque) and later (Romantic) peri-
ods, as well as much pre-twentieth-century European
folk and popular music. This is not to say that the rhyth-
mic practices of these styles are identical—one can often
distinguish a Bach rhythm from a Brahms rhythm, and
either of these from the rhythm of a folk song—but rather
that there are certain fundamental principles that they
all share. One could, indeed, speak of a rhythmic “com-
mon practice” in European music of (roughly) the sev-
enteenth through nineteenth centuries, analogous to the
well-known harmonic “common practice” that charac-
terizes roughly the same body of music. My aim in the
current study is to elucidate the principles underlying
this rhythmic common practice.

If we define the field of music cognition broadly as the
scientific study of the mental processes and representa-
tions involved in all kinds of musical experiences and
behaviors, then studying the cognitive processes involved
in composition is an entirely appropriate goal for the
field. The pursuit of this goal raises formidable prob-
lems, however. To study compositional processes using
experimental methods—the most common methodology
of music cognition—is often difficult if not impossible.
In general, hypotheses about creative processes do not
easily lend themselves to experimental testing. In addi-
tion, much of the music that is of interest to us was writ-
ten hundreds of years ago, and few possessors of this
compositional expertise are available today. However, we
may still test claims about composition using the results
of these compositional processes—the music itself. Music
provides a body of data (albeit not experimentally con-
trolled data) that we can seek to model, just as we would
any other data; the model that makes the most accurate
predictions about the data is then the most plausible
model of the cognitive processes that gave rise to it. In
modeling such data, we try to construct models that gen-
erate (or in some other way predict) patterns that were
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FIGURE 1. Two melodic rhythms.
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FIGURE 2. Two more melodic rhythms.
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FIGURE 3. (A) The melody of Figure 1A: Mozart, Sonata K. 333, third movement, mm. 1-4. (B) The melody of Figure 2A: “Verschlafener Jaeger es

wollt ein Jaegerli jagen,” from the Essen Folksong Collection. (C) The melody of Figure 2B: Mozart, Sonata K. 331, first movement, mm. 1-4.



actually written by common-practice composers (such
as Figure 1A above), and fail to generate those that were
not (such as Figure 1B). A model’s success at this task is
one criterion—not the only criterion, but certainly an
important one—whereby we might evaluate it as a char-
acterization of the cognitive processes underlying the
creation of common-practice rhythms.

Perhaps the most impressive attempt to model com-
positional data in recent years has been the work of
Huron (2001, 2006). Much of Huron’s work in this area
has been concerned with the ways that composition is
shaped by principles of auditory perception. Huron uses
this reasoning, in the first place, to propose principled
explanations of well-known rules of composition. For
example, it is desirable from a compositional viewpoint
for the independent lines of a polyphonic piece to remain
perceptually distinct. Perfect consonances (perfect fifths
and octaves) cause simultaneous notes to fuse, as does
commodulation (two voices moving simultaneously by
the same interval). Thus, the prediction is that composers
should tend to avoid commodulating perfect conso-
nances, also known as parallel fifths and octaves; and
indeed, a traditional contrapuntal rule prohibits such
motions (Huron, 2001). Huron also uses this approach
to generate new predictions that are not covered by tra-
ditional rules, but prove to be borne out in studies of
musical corpora. For example, changes of texture involv-
ing the departure of a single line appear to be less easily
perceived than additions of a single line; composers seem
to have responded to this tendency by avoiding single-
line departures, preferring to retire several voices from
the texture at once (Huron, 1990).

A very different approach to explaining compositional
practice is reflected in the work of Cope (2005) and
Gjerdingen (2007). According to these authors, compo-
sition largely entails the reproduction and concatenation
of patterns that have been heard in other music and are
stored in memory. For Cope, the patterns involved are
literal configurations of notes; for Gjerdingen, they are
more abstract “schemata,” skeletal scale-degree patterns
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that may be elaborated in an endless variety of ways. As
an example of this “replicative” approach, let us return to
Mozart’s rhythmic pattern in Figure 1A. One might
observe that this rhythm can be broken down into four
one-measure patterns, each of which is quite character-
istic of the classical style and could undoubtedly be found
in innumerable other classical-period pieces. By contrast,
the one-measure units of Figure 1B are much less char-
acteristic of classical pieces; the reason Mozart never
wrote such patterns, one might suggest, is that he never
heard them in the music of the time and thus never incor-
porated them into his musical vocabulary.

The replicative view of composition is in some ways
quite compelling. There seems to be no doubt that com-
posers (like other listeners) store in memory musical pat-
terns that they hear frequently and sometimes reproduce
these patterns in their compositions. However, this view
also has limitations. In particular, it has difficulty explain-
ing the fact that the music of the classical period (or indeed
any other style) seems to adhere to certain basic, consis-
tent principles. For example, to return to an example men-
tioned previously, Mozart tends to avoid parallel fifths
and octaves. A replicative account could only explain this
by saying that the music Mozart heard tends to avoid par-
allel fifths and octaves; but this merely defers the ques-
tion, since it must then be explained why the music Mozart
heard had this consistent property. A similar point could
be made about rhythm. In the case of Figure 1A, for exam-
ple, it can be seen that the notes in Mozart’s rhythm have
a strong tendency to occur on relatively strong beats of
the meter; 12 of the 20 notes in this rhythm occur on
strong eighth-note beats, whereas only 6 of the 20 notes
in Figure 1B occur on strong eighth-note beats. And this
reflects a general fact about common-practice rhythm
(as we will see below). An account of composition that
views pieces simply as concatenations of patterns drawn
from memory does not seem to offer any explanation for
such regularities. (Here I assume the well-known view of
metrical structure as a framework of levels of beats of
varying strength, as shown above the staff in Figure 4.
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FIGURE 4. The melody in Figure 3A, showing metrical grid.
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FIGURE 5. Two patterns with the same distribution of notes on beats.

Each level corresponds to a rhythmic value; a “strong”
eighth-note beat is one that is present at one or more lev-
els above the eighth-note level, while a “weak” eighth-note
beat is present only at the eighth-note level.)

Thus, it is difficult to escape the conclusion that the
creation of common-practice rhythms involved general
principles of some kind. But the exact nature of these
principles is unclear. Consider the principle, stated above,
that notes are more likely to occur on strong beats; this is
the essence of a simple model that I present below, which
I call the Metrical Position Model. While this model captures
an important regularity, it is imperfect as a characteri-
zation of classical-period rhythmic practice. According to
this model, the rhythm in Figure 5A is just as likely as
that in Figure 5B; both of them have the same distribu-
tion of notes on beats (two notes on whole-note beats,
one note on a half-note beat, one note on a quarter-note
beat, and one note on an eighth-note beat). Yet Figure 5A
is plainly more characteristic of common-practice rhythm
than Figure 5B. Clearly, then, the Metrical Position Model
is inadequate as a model of common-practice rhythm.
The question then arises, what other kinds of principles
might better capture the facts?

A solution to this problem arises from another obser-
vation about Figure 1A: among the notes that occur on
weak beats (at the quarter-note level or below), all are
adjacent to notes on stronger beats. For example, the
one note on a weak sixteenth-note beat (in the fourth
measure) is flanked by notes on both of the immedi-
ately adjacent eighth-note beats; every note on a weak
eighth-note beat has notes on at least one of the adja-
cent quarter-note beats; and similarly for notes on weak
quarter-note beats. Similarly, every weak-beat note in
Figure 5A is adjacent to a strong beat with a note; in
Figure 5B, however, this is not the case (the second note
has no adjacent strong-beat note). Perhaps, then, com-
mon-practice rhythms are generated in a hierarchical

manner: notes on strong beats are generated first, and
notes on weak beats are then conditional on the adja-
cent stronger ones. This idea is the basis for a model of
rhythm that I will call the Hierarchical Position Model.

In light of cases such as Figure 5, it may seem likely
that the Hierarchical Position Model will predict common-
practice rhythms better than the Metrical Position Model.
But our intuitions about such matters are notoriously
unreliable; what is needed is a rigorous, objective way of
determining which model fits the data better, and by how
much. In what follows, I explore a quantitative method
for testing models of rhythm on musical corpora. The
models will be tested both on classical-period art music
(as represented by Haydn and Mozart string quartets)
and European folk songs. Our method of testing the
models will be probabilistic. A model can be tested as
to the probability it assigns to a body of data; the higher
the probability, the better the model. As well as the two
models described above, four other models also will be
examined using the same method of evaluation.

It seems natural to suppose that the basic principles
underlying composition—whatever they may be—play
a role in perception as well. It is presumably these prin-
ciples, at least in part, that allow listeners to judge whether
a piece of music is characteristic of a style or not—an
ability that most listeners have, at least to some extent.
(T appealed to this ability earlier in this article, in asking the
reader to decide which of the two rhythms in Figure 1 was
taken from a classical-period piece.) After evaluating our
six models with regard to compositional practice, I will
consider their plausibility with regard to the perception
of rhythm, and will consider several sources of evidence
in this regard.

Testing Six Models of Rhythm

THE PROBABILISTIC METHOD OF MODELING
COMPOSITIONAL PRACTICE

The idea that we can evaluate models of data by the
probability that they assign to the data rests on firm, and
quite simple, mathematical reasoning. Let us suppose
we are given a body of data D and want to find the best
model, M, of the source that gave rise to the data. In
probabilistic terms, we want to find the most likely
source model given the data, or the M that maximizes
P(M | D). Bayes’ Rule, a basic rule of probability, tells us
that for any M and D,

P(M | D) < (P(D | M) P(M) (1)

where P(D | M) is the probability of the data given the
model (known as the likelihood of the data), P(M) is the
probability of the model itself before the data are seen
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(known as the prior probability of the model), and “o<
means “proportional to.” If we assume that all models are
equal in prior probability, then

P(M|D) e (P(D | M) (2)

—that is, the most probable model given the data is sim-
ply the one that assigns highest probability to the data.
The conditional clause in the previous sentence deserves
emphasis: expression (2) only holds if the models under
consideration are equal in prior probability. In some
cases, there may be other considerations—for example,
historical evidence about how composers thought about
rhythm, neurological or experimental evidence about
general cognitive mechanisms, or considerations of sim-
plicity or parsimony—that lead us to assign higher prior
probability to some models than others. But for now, let
us neglect such factors and assume that all models are
equal in prior probability.

The method of model evaluation just described is
very well-established in cognitive science and machine
learning. It is sometimes known as “maximum likeli-
hood estimation”; mathematically it hinges on the con-
cept of “cross-entropy,” which will be discussed further
below.! Perhaps the most well-known use of this tech-
nique is in speech recognition (Jurafsky & Martin,
2000). Probabilistic models of speech recognition
require an estimate of the prior probability of any
sequence of words; for this purpose, some kind of model
of the language, or “language model,” is needed.
Language models can be evaluated by the probability
they assign to a corpus of sentences; the higher the prob-
ability, the better the model. A very common kind of
language model is a Markov model, which calculates the
probability of each word conditional on the previous
Nwords. If N=1, it is a “bigram” model, in that it looks
at the probabilities of pairs of adjacent words; if N=2,
it is a “trigram” model. It is important to emphasize
that language models in computational linguistics gen-
erally are used simply for the practical purpose of speech
recognition, and are not claimed to represent human
language production. Here we extend the cross-entropy
approach further, using it to actually evaluate models of
the generative process.

Most often, the body of data we wish to model is a sam-
ple of items drawn from a larger population (perhaps a
theoretically infinite population, such as the sentences of
alanguage). The model must assign a probability to each

'"The term “maximum likelihood estimation” is normally applied
to the process of choosing parameters for a single model, rather than
choosing between different models, as we will do here.
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item, P(I); the probability assigned to the data as a whole
is then the product of the probabilities for all the items,

P(D | M) =P(Ip) x (P(I)) ... x (P(I,) (3)

To avoid the tiny numbers that result from multiplying
many probabilities together, we can take the log of this
expression (which does not change the results in terms
of the ranking of different models):

log P(D | M) =log(P(I,)) + log(P(I})) ...
+log(P(1,))
=2, log(P(I,)) (4)

If we divide this expression by the number of items N, we
get a “per-item” measure of the probability assigned to the
data by the model. We also add a negative sign to cancel
out the negative sign that results from taking the log of
a probability.

—log P(D | M) per item =— 1/N X, log(P(I,)) (5)

This is essentially equivalent to the definition of cross-
entropy.” Note that cross-entropy is always positive, and
that lower cross-entropy implies a higher probability
assigned by the model.

One potential problem in probabilistic model evalua-
tion is “overfitting.” Suppose we were given a corpus of
100 melodic rhythms and wished to find the model
assigning it highest probability. A trivial approach would
be to define a model that assigned a probability of 1/100
to each of the melodies in the corpus, yielding a (per-
song) cross-entropy of —log(1/100) = 4.6, which is, in
fact, the best (lowest) that could be achieved for that cor-
pus. But this model would not be very useful. It would be
highly complex; it would also have no ability to general-
ize to unseen melodies. (Since the entire probability mass
of 1is used up by the corpus, any other melody would be
assigned a probability of 0.) To foil such trivial “cheat-
ing” solutions, it is usually stipulated that the corpus on
which models will be tested may not be seen in design-
ing the models. The typical approach is to use part of the
data for training the model (e.g., setting the parameters)
and another part for testing, a technique known as “cross-
validation.” This is the approach used here.

“The cross-entropy of a model with a body of data is normally defined
as—X, P(x) log(P,,(x)). This assumes a body of data consisting of a series
of items x, where each x may occur many times; the contribution of each
x to the cross-entropy is the probability assigned to x by the model,
log(P,,(x)), weighted by the count of x in the data (as a proportion of
the total), P(x). But in the current case, each of the N melodic rhythms
is assumed to occur only once, thus —X, P(x) log(P,,(x)) =-X, /N
log(P(I,)), which is equivalent to the definition of cross-entropy in expres-
sion (4). The term “perplexity” is also sometimes seen; the perplexity
between a model and data is just 2 to the power of the cross-entropy.
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Cross-entropy has not been widely used in music
research. A number of studies from the 1950’s and 1960’
used entropy—essentially, the cross-entropy of a data set
with itself—as a way of measuring the complexity of
styles and pieces (for a review of this work see Cohen,
1962); but these studies made no use of cross-entropy as
a method of model selection. Perhaps the earliest musi-
cal application of cross-entropy was the work of Conklin
and Witten (1995). Conklin and Witten focused on the
problem of modeling pitch patterns. A pitch sequence
can be represented in various ways: as a series of pitches,
scale-degrees, melodic intervals, scale-degrees combined
with metrical positions, and so on. Each of these types of
data can be represented as a Markov chain (what they
call a “viewpoint”), and each type of Markov chain assigns
a probability to the pitch sequence; viewpoints also can
be combined. Conklin and Witten compared the pre-
dictive power of different “multiple viewpoint systems”
with regard to pitch patterns in Bach chorale melodies
(see also Pearce & Wiggins, 2004). While Conklin and
Witten’s stated goal was to generate new music rather
than to model compositional processes, their method is
fundamentally similar to what is proposed here.

We use the approach outlined above to compare six dif-
ferent models of melodic rhythm. The models are tested
first on a corpus of European folk songs—the Essen
Folksong Collection—and second, on a corpus consisting
of the first violin parts of Mozart and Haydn string quar-
tets. We begin with the folksong corpus for two reasons.
First, it provides a very large body of data and thus offers
a better opportunity for choosing between alternative
models. Second, our focus in this study is on the rhythm
of melodies. While it seems safe to say that the Essen
collection consists entirely of melodies, classical string
quartets—even the first violin parts—do not; at some
points in classical quartets, the first violin plays passage-
work material not normally considered melodic, or accom-
paniment patterns supporting a melody in another voice.
Still, classical quartets offer an interesting corpus for
analysis and a useful comparison to the folksong data.

TESTING THE MODELS ON THE ESSEN
FOLKSONG COLLECTION

The Essen Folksong Collection (Schaffrath, 1995) contains
over 6,000 European folk melodies, transcribed with met-
rical information (time signatures and barlines); the
melodies were encoded by Huron (1999) in kern notation,
a widely used format for computational music represen-
tation. To simplify the situation, we consider only melodies
in 4/4 time; this yields a set of 1,585 melodies. (We will
consider later how the models might be extended to other
time signatures.) We also exclude songs with notes on beats

below the eighth-note level; 350 songs were excluded for
this reason. This yields a corpus of 1,235 melodies, con-
taining a total of 13,786 measures. From this corpus, 247
melodies were selected randomly as a test corpus and the
remaining 988 were used as a training corpus.

To further simplify testing, in each song, we consider
only the portion from the first downbeat to the last down-
beat, inclusive, thus omitting most of the last measure as well
as any notes that precede the first downbeat. We disregard
note-offsets—that is, we do not distinguish between (for
example) “half-note” and “quarter-note plus quarter-rest.”
Thus, each rhythmic pattern is represented simply as a pat-
tern of note-onsets. (These points also apply to our tests of
the Haydn-Mozart corpus, to be discussed later on.) We
assume a metrical grid consisting of eighth-note, quarter-
note, half-note, and whole-note levels; the correct grid for
each song can be inferred from the kern notation.

We begin with two very simple models and work
upwards to the more complex models proposed in the
previous section.

Model 1 (Uniform Position Model). A decision is made at
each beat as to whether or not to generate a note. Note
onsets are equally likely at all beats.

This model has just one parameter, which is the over-
all likelihood of a note occurring on a beat. From the
training set, we find that 51% of all beats have note
onsets. (The beats under consideration are those of the
eighth-note level; recall that songs with notes at sub-
eighth-note levels were excluded from the corpus. We
use the eighth-note level even in songs that contain no
eighth-notes.) Let us now define variables B,, one for
each beat in the test corpus; each B, has the value “note”
(if there is a note onset there) or “rest” (if there is not).
The model assigns probabilities P(B, = note) = .51 and
P(B, =rest) = .49 for all beats. The probability of a song
rhythm is then the product of these values for all beats
in the melody. For example, consider the opening of
Figure 1A—the first measure plus the downbeat of the
second measure, shown in Figure 6 (let us assume this
is an entire song). Five of the nine beats—beats 0, 3, 4
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FIGURE 6. The beginning of the Mozart rhythm in Figure 1A.



TABLE 1. Cross-Entropy for Six Models of Rhythm on Two Corpora.
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Essen Corpus HM Corpus

Cross-Entropy Number of Cross-Entropy Number of

(per song) Parameters (per piece) Parameters
1. Uniform Position Model 62.37 1 1150.14 1
2. Zeroth-Order Duration Model 54.45 15 943.89 15
3. Metrical Position Model 42.47 4 965.94 5
4. Fine-Grained Position Model 40.21 8 959.42 16
5. Hierarchical Model 38.76 13 819.37 17
6. First-Order Metrical Duration Model 37.36 56 783.79 240

and 6 of measure 1 and beat 0 of measure 2—have notes;
the other four beats do not. (We label the eight beats of
each measure as 0 through 7, with 0 being the down-
beat.) Thus:

—log (P(rhythm)) = —log(.51 %X .49 x .49 X .51 X .51
X .49 X .51 X .49 X .51)

=6.22 (6)

In this way, we can compute the negative log proba-
bility for each song in the test set; adding these values
(as in Equation 4 above) yields the negative log proba-
bility of the entire test set, which is 15,405. Recall, how-
ever, that cross-entropy normally represents negative
log probability in a “per-item” fashion (as in Equation
5 above). In this case, it seems logical to treat songs as
items; thus, we divide by the number of songs in the test
set, yielding a (per-song) cross-entropy of 62.37 (see
Table 1).> While we have nothing to compare this to at
present, we will see shortly that this performance is very
poor. This should not surprise us, for the model knows
almost nothing; as far as it is concerned, every possible
location for a note is as good as any other.

The model just presented operates by making a series
of decisions about beats—that is, positions in time; it
decides whether or not to generate a note-onset at each
position. For this reason we call it a “position model.” A
very different approach to generating rhythms would be
to make decisions for a series of notes, choosing the onset
time for each note (under the assumption that each note
must be later than the previous one). In effect, each deci-
sion determines the time interval between the previous
note and the current one (usually known as an “interonset

31t might seem more logical to treat beats as items, rather than
songs. The problem with this is that some of the models presented
below do not compute probabilities for beats, but rather, for notes.
If these individual elements (notes or beats) were treated as items,
then the number of items would differ between models, and it would
not be possible to do a fair comparison between them.

interval”). If we assume that each note extends to the
onset of the following note (making no distinction
between a note continuation and a rest), the interonset
interval between two notes is equivalent to the duration
of the first note; by choosing the location for one note,
we choose the duration of the previous one. Thus we
could call this a “duration model.”*

Model 2 (Zeroth-Order Duration Model). A decision is
made at each note as to its interonset interval from the
previous note.

The term “zeroth-order” implies that each interonset
interval is chosen independently of the previous one. We
parameterize the model by gathering data as to the fre-
quency of different interonset intervals in the training
set (measuring intervals in eighth-note beats). These data
are shown in Figure 7. The duration of a note could, in
principle, be any value; but interonset intervals of more
than two measures never occur either in the training

“Both the position models presented here (Models 1, 3, 4, and 5)
and the duration models (Models 2 and 6) are incomplete as genera-
tive models, in that they do not specify the length of the piece being
generated. Position models could do this by generating a span of beats
to be filled in with notes; duration models could do it by choosing a
number of notes to be assigned metrical positions. In both cases, these
choices could be made stochastically from distributions. However, to
work out the details of this would be quite complex; I suspect also that
it would have little effect on the results in terms of the relative cross-
entropies assigned by the models to the test corpus. Model 2 is incom-
plete in another way: It does not assign any probability for the location
of the first note of the melody. For that reason, the probability it assigns
to the corpus is somewhat higher than it should be. Recall, however,
that we exclude everything before the first downbeat. In virtually all
melodies in the Essen corpus (all but two of the 988 melodies in the
training set), the first note of the portion of the song considered is on
the first downbeat (in other words, the first downbeat is almost never
“empty”); if we assign this a probability of 1, the total probability
assigned to the melody is unchanged. The same point applies to Model
6 below, which also does not assign any probability for the location
of the first note.
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FIGURE 7. Interonset intervals (in eighth-notes) in the Essen training set.

corpus or in the test corpus; thus, they can be assigned
a probability of zero. In testing, the probability of a rhyth-
mic pattern is then the product of the probabilities for all
of its durations. For the pattern in Figure 6 (with interon-
set intervals 3, 1,2, 2):

—log P(rhythm) = —log (.058 X .353 X .489 x .489)
=532 (7)

For the corpus, the cross-entropy is 54.45 per song—
somewhat better than the Uniform Position Model (see
Table 1).

An essential flaw of both the Uniform Position Model
and the Zeroth-Order Duration Model is that they have
no knowledge of meter. As noted above, note-onsets are
much more likely on strong beats of the meter; this is a
well-known principle of music theory (Lerdahl &
Jackendoft, 1983) and has been confirmed empirically as
well (Huron, 2006; Palmer & Krumhansl, 1990; Temperley,
2007). Our next model captures this regularity.

Model 3 (Metrical Position Model). A decision is made at
each beat whether or not to generate a note. The probability
of a note at a beat depends on its metrical strength.

This is once again a position model, as it makes a deci-
sion for each temporal position. To set the model’s param-
eters, we gather data as to the proportion of beats at each
metrical level that have note onsets. The data are shown
in Figure 8. Henceforth, level 1 (or L1) is the eighth-note
level, level 2 is the quarter-note level, level 3 is the half-note
level, and level 4 is the whole-note level. It can be seen,
indeed, that the probability of a note onset increases
monotonically with higher levels; the difference is great-
est between the eighth-note and quarter-note levels and
somewhat smaller for higher-level distinctions. As in
Model 1, we define a variable B,, for each beat, but now
P(B,) depends on the metrical level of the beat; for a level
1 beat, for example, P(B, = note) = .21 and P(B,=rest) =
1 —.21 =.79. The probability of a rhythmic pattern is

again the product of the P(B,) values for all the beats. For
the pattern in Example 6:

—log P(rhythm) = —log(.988 x .79 X .311 X .21 x .842
X .790 X .689 % .79 % .988)
=4.00 (8)

(For example, the first beat is an L4 beat with a note,
yielding a value of .988; the second beat is an L1 beat
with no note, yielding .79; and so on.) The cross-entropy
assigned to the corpus is 42.47 per song—a substantial
improvement over our first two models.

While Model 3 captures a valid and important general-
ization about common-practice rhythms, it is inadequate
in certain respects. A well-known principle of Western
rhythm is that notes on strong beats tend to be longer than
notes on weak beats (Lerdahl and Jackendoff, 1983). Given
the rhythm “eighth-note/doubled-dotted-half,” for exam-
ple, it seems more natural to put the long note on the

1.0

L1 L2 L3 L4
P 21 .689 .842 .988

Metrical Level

FIGURE 8. The proportion of beats with note onsets at different met-
rical levels in the Essen training set.
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FIGURE 9. Four rhythmic patterns.

downbeat, as in Figure 9A, rather than the short note, as
in Figure 9B. Model 3 has no way of capturing this; by this
model, the two rhythms are assigned equal probability,
since both have one note on a level 4 beat and one on a
level 1 beat. One solution to this problem would be to con-
dition the probability of notes on the position within the
measure, as Model 3 does, but in a more fine-grained man-
ner, distinguishing between different positions of equal
strength. A note on a weak beat just before a strong beat
(e.g., position 7) is likely to be short (since strong beats
generally have notes), whereas a note just after a strong
beat (e.g., position 1) is much more likely to be long. If
we give higher probability to notes at position 7 than at
position 1, we are in effect exerting pressure for weak-beat
notes to be short. (This gives Figure 9A higher probability
than Figure 9B, for example.) Thus, we define Model 4:

Model 4 (Fine-grained Position Model). A decision is made
at each beat whether or not to generate a note. The prob-
ability of a note at a beat depends on its position within
the measure.

In this case, separate parameters are set for the prob-
ability of a note at each of the eight positions within the
measure. The data are shown in Figure 10. (It can be seen,
as expected, that the probability for a note at position 7
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is higher than for a note at position 1.) The cross-entropy
calculations are then the same as in Models 1 and 3. The
cross-entropy assigned to the corpus is 40.21 per song.
Our test results show that Model 4 predicts common-
practice rhythms better than Model 3, but only slightly.
This suggests that Model 4 may not be the best way of
capturing the “note length” principle. Consider also the
patterns in Figure 5, discussed earlier. These two patterns
are identical by Model 3 and even by Model 4: the dis-
tribution of notes across beats of the measure is the same
in both models (both patterns have two notes at posi-
tion 0 and one note each at positions 3, 4, and 6). Yet
Figure 5B clearly seems less characteristic of common-
practice rhythm than Figure 5A. One might explain this
in terms of the note length principle: Figure 5B features
along note at position 3 whereas Figure 5A does not. On
the other hand, long notes on weak beats do sometimes
occur. Patterns such as Figure 9B, while not common,
are certainly not unheard of in common-practice music.
(Here the literal durations of notes may make a difference;
Figure 9C, in which the “long” note is a short note followed
by a rest, seems a bit more idiomatic than Figure 9B,
though by all the models considered here, the two are
equivalent.) This suggests that perhaps “prefer long notes
on strong beats” is not really the underlying principle

1.0
8
6 1
-9
4 1
2 1
0
0 1 2 3 4 5 6 7
P| 988 .092 584 | .309 842 126 794 313
Metrical position

FIGURE 10.The proportion of beats with note onsets at each measure position in the Essen training set.
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FIGURE 11. Context types in the Hierarchical Position Model.

involved. A further observation is that the weak-beat note
in Figure 9B immediately follows a strong-beat note. By
contrast, the weak-beat note in Figure 9D is not adjacent
to a note on either side; and this pattern truly seems foreign
to the common-practice idiom. Perhaps a note on a
lower-level beat is more likely when there are notes on
one or both of the adjacent strong beats: one might say
in that case that the weak-beat note is “anchored” to the
neighboring strong-beat note(s). (This term is due to
Bharucha, 1984, who proposed that a non-chordal pitch
is heard to be “anchored” to—subordinate to and licensed
by—a registrally adjacent chordal pitch. What I propose
here is an analogous phenomenon in the rhythmic
domain.) It was suggested earlier that this could be cap-
tured with a model in which notes are generated in a
hierarchical fashion.

Specifically, imagine a position model that generates
notes first on beats at levels 3 and 4 (how this is done will
be explained below). Notes at level 2 beats are then gen-
erated conditional on the “note status” of the neighbor-
ing upper-level beats; that is, whether or not they contain
notes. There are four possible situations here; there might
be: (1) no note on either the preceding or following strong
beats (in which case we will call the level 2 beat “un-
anchored”); (2) a note on the preceding beat but not the
following one (“pre-anchored”); (3) a note on the fol-
lowing beat but not the preceding one (“post-anchored”);
or (4) a note on both adjacent beats (“both-anchored”)
(see Figure 11). In the training corpus, we examine every
pair of adjacent upper-level (level 3 or 4) beats, classify
it as one of the four contexts just described, and then
observe whether there was a note on the intervening level
2 beat. This yields the results in Figure 12. We can see, for
example, that in a both-anchored context, the probabil-
ity of a level 2 note is quite high (.713), as it is in a post-
anchored context (.889); in a pre-anchored context it is
much lower (.265), and in an unanchored context it is
lower still (.062). Notice that a pre-anchored note is longer
than a post-anchored one; the fact that post-anchored
notes are higher in probability than pre-anchored notes
thus reflects the avoidance of long notes on weak beats. We
repeat this process for level 1 beats, conditional on neigh-
boring stronger beats, and for level 3 beats, conditional

Post-anchored Both-anchored

on neighboring level 4 beats. (It may seem surprising that
the probability of an L3 note in an unanchored context is
1. In fact, there was only one case of an unanchored L3
context—that is, two successive L4 beats with no note on
either one—in the entire training set.) The probability of
a note on a level 4 beat is simply represented by a single
parameter value (.998), and does not depend on neigh-
boring beats. In testing, we compute the probability of a
melody by assigning a probability for each B,, as we would
in any position model, but now P(B, = note) depends on
the level of the beat and the note status of the adjacent
stronger beats.

Model 5 (Hierarchical Position Model). A decision is made
at each beat whether or not to generate a note. The prob-
ability of a note at a beat depends on the level of the beat
and the note status of the surrounding upper-level beats.

Once again we can use Figure 6 as an example. To assign
a probability to this pattern, we first consider the two
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FIGURE 12. Parameters for the Hierarchical Position Model from the
Essen training set. “Un,” “pre,” “post,” and “both" are context types (see
Figure 11); L1, L2, and L3 are metrical levels. For each combination of con-
text and metrical level, the value shown is the probability of a note-onset.
The probability for a note at a level 4 beat is independent of context and
is .998.



level 4 beats (position 0 of measure 1 and position 0
of measure 2); both of these beats have notes, yielding
probabilities of .998 each. We then consider the L3 beat
(position 4); this note is in a “both-anchored” context
(since the two neighboring L4 beats both have notes),
and position 4 also has a note, yielding a probability of
.841. The two L2 beats (positions 2 and 6) are both both-
anchored; the second one has a note (.713) and the first
does not (1-.713 = .287). Of the four L1 beats (positions
1,3,5,and 7), position 1 is pre-anchored (there is a note
at position 0 but not at position 2) with no note, yield-
ing 1-.005 = .995; position 3 is post-anchored (there is
a note at position 4 but not at position 2) with a note,
yielding .384; positions 5 and 7 are both both-anchored
with no note, yielding .77 for each. Multiplying these
nine probabilities yields the probability of the pattern.

On the Essen test set, Model 5 yields a cross-entropy of
38.76 per song. While this is our best score so far, it is a rel-
atively modest improvement over Model 4, and one might
wonder if still further improvement is possible. One pos-
sibility is suggested in a model of Raphael (2002). Raphael’s
model is essentially a duration model, in that it makes deci-
sions for a series of notes. However, in Raphael’s model,
the probability of a note occurring at a point depends not
on the resulting duration but on the note’s metrical posi-
tion; it is also conditioned on the metrical position of the
previous note. (We call the note being generated the “con-
sequent” note, and the previous note the “antecedent” note.)
For example, the probability of the second note in Figure
6 would depend on its own position within the measure
(position 3) and the metrical position of the previous note
(position 0). We express this in our final model:

Model 6 (First-Order Metrical Duration Model). A met-
rical position is chosen for each note, conditional on the
metrical position of the previous note.”

One could regard this model as a first-order Markov
model or “bigram” model of notes, where notes are

Two other theoretical possibilities should be considered briefly. One
is a first-order (non-metrical) duration model. In such a model, the IOI
of each note (its time interval relative to the previous one) would be con-
ditioned on the IOI of the previous note. While this model might
achieve a slight improvement over the zeroth-order duration model, it
too has no knowledge of meter, and thus seems unlikely to perform
very well. Also possible is a zeroth-order metrical duration model. Such
a model would choose a location for each onset, within (say) a one-
measure window after the previous onset, with different probabilities
for different positions, but not conditional on the position of the pre-
vious onset. (For example, there would be a certain probability of the
note occurring at position 2, whether the previous event was at posi-
tion 1 or at position 7). This model also seems unlikely to perform well.
In particular, it has no way of capturing the fact that notes tend to be
fairly dense: given a note at any position, the next note is likely to be fairly
soon afterwards (this can be seen very clearly in Figure 7).
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identified by their metrical positions. (I will sometimes
refer to Model 6 simply as the “first-order model,” since
it is the only first-order model among the ones consid-
ered here.) For example, the pattern in Figure 6 features
the bigrams 0-3 (the first note is at position 0 in the
measure and the second is at position 3), 3-4, 4-6, and
6-0. The probability of a note at a consequent position
given an antecedent position, P(C | A), is calculated as:

P(C| A) = count(C, A) | count(A) (9)

where count(C, A) is the count (number of occurrences)
of the bigram and count(A) is the count of notes at the
antecedent position. The probability for a melody is the
product of P(C| A) for all notes in the melody. No prob-
ability is assigned for the first note of the melody, but in
virtually every song in the Essen corpus, the first note
occurs on the first downbeat (recall that partial measures
before the first downbeat are excluded); thus this is
assigned a probability of 1 (see note 4). Training data for
all possible bigrams (antecedent-consequent combina-
tions) are shown in Table 2. (Similar data are presented by
Huron, 2006, p. 243. Each consequent position in Table 2
refers to the first possible representative of that position—
the one immediately following the antecedent note. That
is to say, given an antecedent note at position 0 in m. 1,
consequent position 2 in the table refers to position 2
of m. 1 rather than, for example, position 2 of m. 2 or
m. 3.°) To find the probability of the bigram 0-3, we look
up the probability that, given an antecedent note at posi-
tion 0, the consequent note occurs at position 3; the table
shows this probability as .163. The bigrams 3-4, 4-6, and
6-0 yield the probabilities .996, .659, and .686, respectively;
multiplying these four values yields the probability of the
pattern in Figure 6.

It can be seen that this model captures several of the
regularities discussed above. It captures the general pref-
erence for notes on strong beats, in that—whatever the
position of the antecedent note—there tends to be a pref-
erence for the consequent note to be at a relatively strong
position. (This can be seen from Table 2: for example,
there is generally a higher probability of a consequent
note at position 0 than position 1—unless the antecedent
note is at position 0.) It also provides a way of capturing
the “note length” principle. Given an antecedent note at

®Consequent positions other than these “immediate” ones are
assumed to have a probability of zero. In effect, then, we assign zero
probability to interonset intervals of more than one measure; these
are extremely rare in the corpus, accounting for less than .03% of all
interonset intervals. In testing, we assign such notes the same proba-
bility as if they occurred at the same metrical positions with interon-
set intervals of a measure or less. For this reason the probabilities
assigned by the model are slightly higher than they should be.
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TABLE 2. Parameters for the First-Order Metrical Duration Model.

Consequent

Antecedent 0 1 2 3 4 5 6 7
0 .013 .093 488 163 141 .010 .090 .001
1 .001 0 .999 0 0 0 0 0
2 .003 0 .001 252 677 .018 .048 .002
3 0 0 0 0 .996 .002 .001 .001
4 135 0 .008 0 0 125 .659 .073
5 .014 0 0 0 0 0 978 .008
6 .686 0 .002 0 0 0 0 312
7 1.000 0 0 0 0 0 0 0

position 0, there is a fairly high probability of the conse-
quent note occurring after a relatively long time interval
(for example, positions 4 or 6), whereas for an antecedent
note at position 1, this probability is much lower (in fact,
zero). But both of these principles—the preference for
notes on strong beats, and the preference for longer notes
on strong beats—are captured by Model 5 as well. Thus
it is, a priori, not obvious whether this model will be bet-
ter or worse than Model 5. Testing it on the Essen test
set, we find that in fact Model 6 is slightly better; it yields
a per-song cross-entropy of 37.36 per song.

No doubt these test results contain some error, due
simply to the way the corpus was split into sets for test-
ing and training (though given the large amount of data,
it seemed likely that this error would be fairly small).
One way to examine this is with K-fold cross-validation.
Under this method, the same test is repeated several times,
each time using a different portion of the corpus as the
test set (and using the remainder of the corpus for train-
ing in each case). The original test set contained 20% of
the corpus (Test Set 1). The tests reported above were
repeated four more times, each time using a different
20% of the corpus as a test set (Test Sets 2 through 5).
For each of the six models, the cross-entropy for Test
Set 1 was compared to the mean of the cross-entropies
for the other four test sets. For each model, the differ-
ence was less than 1%; the ranking of the six models was
the same as well. This suggests that the results were not
greatly affected by the way the corpus was divided into
testing and training sets.

We have now tested six models of rhythm on a corpus
of folk melodies. Before drawing any conclusions from
this, we apply the same six models to another corpus.

TESTING THE MODELS ON CLASSICAL STRING QUARTETS

The second corpus we will consider consists of all of
Haydn’s and Mozart’s string quartets. Like the Essen
collection, these are available in kern notation; we call

this the HM corpus. The original corpus contains 309
movements. We again selected only those in 4/4 time.
Since the frequency of notes on 16th-note beats is quite
a bit higher in the HM corpus, we included movements
with notes on 16th-note beats; the models therefore
had to be modified to allow this possibility. (We also
allowed movements with notes on sub-16th-note beats,
though these notes were simply ignored.) This yielded
a corpus of 63 movements, or 6,900 measures; 32 move-
ments were put in the training corpus and 31 in the
test corpus. Our tests used only the first violin part of
each movement. These parts (like many string quartet
parts) contain many long stretches of empty measures;
these passages are of little interest, and also cause prob-
lems for some of the models (especially duration mod-
els, since the duration between two onsets may be very
large). Thus, all empty measures were deleted from the
corpus.

The testing procedure was exactly the same as with the
Essen corpus (with the exception that each model was
modified to allow notes on 16th-note beats). The results
are shown in Table 1. It can be seen that they are broadly
similar to the results on the Essen corpus, in terms of the
ranking of the different models. One difference is that
the Zeroth-Order Duration Model slightly outperforms
both the Metrical Position Model and the Fine-Grained
Position Model. But the two highest-scoring models are
(first) the First-Order Metrical Duration Model, and (sec-
ond) the Hierarchical Position Model, just as with the
Essen data; and the difference in score between these two
models is very close to that on the Essen data (the cross-
entropy for the first-order model is 4% lower than that
of the hierarchical model on the Essen corpus, 5% lower
on the HM corpus).

The parameters for the Hierarchical Position Model on
the Haydn-Mozart data are shown in Figure 13. There are
clear similarities between these values and those drawn
from the Essen corpus, shown in Figure 12. In both cases,
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FIGURE 13. Parameters for the Hierarchical Position Model from the
Haydn-Mozart training set. The probability for a note at a level 4 beat is .891.

the increase in probabilities as one moves to higher levels
reflects the higher probability of notes on stronger beats.
Like the Essen corpus, the Haydn-Mozart corpus shows a
general preference for both-anchored and post-anchored
events over pre-anchored and unanchored ones. There are
also significant differences between the two corpora. Post-
anchored contexts have higher note probabilities than
both-anchored contexts in the Essen corpus (at all levels),
while in the Haydn-Mozart corpus, the reverse is true. The
higher values for both-anchored contexts in the Haydn-
Mozart corpus may be caused partly by long runs of
isochronous notes (especially eighth- and sixteenth-notes),
which are more common in string quartets than in folk
melodies. The Haydn-Mozart corpus also shows a rela-
tively high probability for unanchored notes, especially at
the quarter-note level (L2); this indicates a significant pres-
ence of syncopation in the Haydn-Mozart corpus, a topic
that we will return to below.

COMPLEXITY

It was noted earlier that, assuming all models are equal
in prior probability, the one that assigns highest proba-
bility to the data is the best model and the one that must
be judged most plausible as a model of the compositional
process. By this criterion, we must conclude that Model
6—the First-Order Metrical Duration Model—is the best
model of the data, with regard to both the folksong cor-
pus and the string quartet corpus. At this point, how-
ever, we should reconsider our assumption that all models
are equal in prior probability. Cross-entropy indicates
the predictive power or “goodness-of-fit” between a
model and the data; by all accounts, this is one criterion
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that should be considered in the model selection process.
But other criteria may merit inclusion as well. In partic-
ular, one criterion that seems worthy of consideration is
complexity. It is generally accepted that, other things
being equal, a simpler model is better and more likely to
be true (this is just the well-known principle of “Occam’s
Razor”). To some extent, this factor is addressed by cross-
validation: A model that is very specifically tailored to a
certain training set is likely to be highly complex, but is
also unlikely to perform well on another data set. But
studies of model selection (Griinwald, 2004; Pitt, Myung,
& Zhang, 2002) have generally argued that some further
consideration of complexity is desirable beyond this.

How could the complexity of a model be objectively
measured? One standard approach is to define it as a
function of the number of free parameters—that is,
parameters that are set through training (Pitt et al,,
2002). The number of parameters required by each of
our six models is shown in Table 1. (For any variable,
the number of parameters needed is one less than the
possible values of the variable, because all the probabil-
ities must sum to 1. For example, Model 2 has just a sin-
gle variable with 16 values, hence 15 parameter values.
Model 5 has 12 variables—one for each combination of
level and context—plus one for level 4; each of the 13
variables has just two values and thus requires just one
parameter.) For the moment, let us consider just the Essen
corpus. Perhaps not surprisingly, there is a clear trade-off
between complexity and predictive power; models with
more parameters tend to predict the data better. There is,
however, a particularly stark difference between Models
5 and 6 in this regard. While the improvement in pre-
dictive power (the reduction in cross-entropy) of Model
6 over Model 5 on the Essen corpus is only about 4%,
Model 6 requires more than four times as many param-
eters as Model 5.

The difference in complexity between Models 5 and 6
becomes even more striking when we consider how the
models might be extended. Suppose we modify Models
5 and 6 to allow notes on sixteenth-note beats, as we did
with the Haydn-Mozart corpus (see the rightmost col-
umn in Table 1). For Model 5, we only need to add four
more parameters—one parameter for each of the four
contexts for the sixteenth-note level—yielding a total of
17 parameters. For Model 6, however, each measure now
has 16 positions, so the number of parameters needed is
now 15 x 16 =240. Model 6 now has more than 14 times
as many parameters as Model 5. As noted earlier, the dif-
ference in predictive power between the two models is
not much different between the two corpora; but the
addition of the sixteenth-note level greatly increases the
difference in complexity between the two models.



368 David Temperley

It is interesting to consider also how the above models
might be extended to other time signatures. Consider 3/4
time. In the case of the Hierarchical Position Model, L1
and L0 are essentially unchanged, and the same parame-
ters could be used for these levels as in 4/4 time. (It is
not clear whether this would be borne out empirically,
but it is at least a reasonable possibility.) With regard to
L2, there are now four possible note patterns, rather than
just two, that could occur for each of the four contexts
(see Figure 14): one could have a note on both L2 beats
(A), just the first (B), just the second (C), or neither (D).
Thus, 3 parameters would be needed for each context, or
12 altogether for Level 2. Level 3 is now the highest level
so only one parameter would be needed for that. A total
of 3+ 3+ 12+ 1 =19 parameters would thus be needed,
six of which would be shared with the 4/4 parameters. In
the case of Model 6, by contrast, it is not at all clear how
the parameters for 4/4 could be extended to 3/4; it appears
that a completely new set of 12 X 11 = 132 parameters
would be needed. In short, while the Hierarchical Position
Model seems to allow some sharing of parameters between
time signatures, Model 6 does not, at least not in any obvi-
ous way. Here too, then, it appears that Model 5 is a good
deal simpler than Model 6.

It seems not unreasonable to argue, then, that when both
predictive power and complexity are taken into account,
Model 5 is preferable to Model 6, and to the other four
models as well. This is really only an opinion, and depends
on how the factors of predictive power and complexity are
weighed. But it is, at least, one reasonable conclusion.

One might wonder if there was a more objective way
of balancing goodness-of-fit and complexity to arrive at
a single criterion for model evaluation. One possible solu-
tion to this problem lies in the approach known as
Minimum Description Length (MDL) (Griinwald, 2004;
Pitt et al., 2002; Mavromatis, 2005, 2009; Rissanen, 1989).
Under this approach, given a body of data, a model can
be evaluated by the “description length” that it yields,
which includes both the description of the data given the
model and the description of the model itself:

Lzatal:L(D | M) + L(M) (10)
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FIGURE 14. Pattern types for the Hierarchical Position Model in 3/4 time.
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A shorter description means a better model. The term
L(D | M) can be construed simply as the negative log
probability assigned by the model to the data—that is,
the cross-entropy. (This relies on a basic principle of
information theory: the negative log probability assigned
by a model to data is proportional to the number of “bits”
required to encode the data under an optimal encoding
scheme; a lower probability means more bits, i.e., a longer
description.) The L(M) term can then be construed to
represent the complexity of the model. (See Mavromatis,
2005, 2009, for an application of MDL to music, though
in the domain of pitch rather than rhythm.)

The problem is how the model length L(M) is to be
quantified. Several proposals have been put forth for this,
but none seems fully appropriate for the current situa-
tion. One solution is to define the model description
length as proportional or equal to the number of param-
eters (Papadimitriou et al., 2005). The number of param-
eters can be added to the cross-entropy to produce an
overall measure of “goodness” for each model. The data
length favors models fitting the data better, and the model
length favors simpler models, as is desired. There is a
problem with this approach, however. Recall that cross-
entropy is generally expressed in a “per-item” fashion; in
Table 1, items are songs, but other units could just as eas-
ily be used, such as measures. When comparing cross-
entropy values for different models, this makes no
difference (as long as the number of items is the same
for all models). But in the description length framework
proposed above, the item length is crucial: longer items
will increase the difference in cross-entropy between
models and will thus give data description length (fit to
the data) a greater weight than model description length
(complexity). Once again, it appears that an arbitrary
decision must be made as to how complexity and good-
ness-of-fit are to be balanced. An alternative approach,
used by Mavromatis (2009), is to define data description
length as the negative log probability of the entire test
set; but then the magnitude of differences in data descrip-
tion length between models (and thus the weight of good-
ness-of-fit in relation to complexity) will depend on the
size of the test set, which also seems wrong.



Another way to define model description length is by
considering the average cross-entropy with all possible
data sets, the reasoning being that a simpler model is
one that achieves a good fit to fewer possible data sets
(Griinwald, 2004). This seems counterintuitive, however.
In the case of our models, Model 1 achieves roughly an
equally good fit to all data sets (all possible rhythmic
patterns—since the probability of a note occurring on a
beat is roughly .5), which would make it highly complex
by the criterion just mentioned. Yet intuitively, it seems
that this model is the simplest of the ones proposed. (The
weakness of Model 1 is not its complexity, but rather, its
poor fit to the data.) In short, it seems at present that
there is no fully satisfactory method for objectively bal-
ancing goodness-of-fit with model complexity.

Discussion

We have now considered six models of melodic rhythm,
and have evaluated each of them based on the probabil-
ity they assign to two musical corpora. On both corpora,
the best of the six is the First-Order Metrical Duration
Model, which calculates the probability of each note-
onset based on its metrical position and the position of
the previous note. A close second is the Hierarchical
Position Model, which calculates the probability of a note
depending on the note status of neighboring strong beats.
In terms of complexity, however, the hierarchical model
is strongly preferable to the first-order model, as it
requires far fewer parameters. In this section we discuss
these results and consider some further issues.

First of all, we should consider some questions that
may have arisen about the current approach. By the rea-
soning advanced above, the Hierarchical Position Model
is the best model of the data (when both predictive power
and complexity are considered) and thus the most plau-
sible model of the composition of common-practice
rhythms. But what does this mean? I am not suggesting,
first of all, that the composition of rhythms was literally
“probabilistic,” in the sense of involving actual stochas-
tic choices (for example, choices made by flipping a coin
or rolling a die). Rather, the use of probabilistic models
here—as in other fields—implies that certain aspects of
the compositional process are simply unknown and can
only be described in an approximate way. Clearly, other
factors were involved in the process, and a more com-
plete model would have to specify what these factors were
and how they interacted with the hierarchical model.
One possibility is that rhythms were constructed by a
serial decision process of the kind assumed here, in which
decisions were partly guided by the preferences embodied
in the hierarchical model (e.g., “prefer post-anchored or
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both-anchored notes”) but also by other considerations—
for example, the natural speech rhythm of the text being
set (in vocal music), or a preference for larger conven-
tional patterns of various kinds. The parameters of the
hierarchical model could then be viewed as measures of
the acceptability or “goodness” of various kinds of events.
Alternatively, it may be that rhythms were initially gen-
erated by a completely different process, such as selec-
tion from a set of patterns stored in memory (the
“replicative” approach of Cope, 2005, and Gjerdingen,
2007, might play a role here), and that the hierarchical
model was then brought to bear as a way of filtering or
adjusting the patterns put forth by this initial process
(perhaps sometimes rejecting them and sending the
process back to the first stage). But under either of these
scenarios, the hierarchical model represents a strong
empirical claim as to the nature of the compositional
process: it implies that patterns were evaluated based on
the note status of beats, conditional on the note status
of surrounding strong beats. Other models represent
alternative claims: for example, the First-Order Metrical
Duration Model claims that the goodness of a pattern
depends on the metrical position of each note in rela-
tion to the position of the previous note. It is important
to emphasize, then, that these models do not just repre-
sent probabilistic descriptions of the data, but also entail
substantive claims about how the data were created.

If the hierarchical model—or any of the other mod-
els presented here—really does represent part of com-
posers’ musical knowledge, it is natural to ask how this
knowledge was acquired. The most plausible answer
would seem to be that it was acquired through exposure
to music: Composers adjusted the parameters of their
internal models (and perhaps even more fundamental
aspects of the models themselves) to match the frequency
of events in the environment. (This raises the issue of
the connection between production and perception,
which we return to below.) If this is the case, it might
be argued that there is little difference between the view
advanced here and the replicative view of Cope (2005)
and Gjerdingen (2007). In both cases, composition con-
sists largely of a concatenation of patterns (either directly,
or indirectly by some kind of filtering process), whose
likelihood of being chosen depends on their frequency
of occurrence in the composer’s environment. All that
differs is the scale—the granularity, one might say—of
the patterns involved: individual notes or beats (or per-
haps, pairs of notes) in my models, larger patterns in
Cope and Gjerdingen. While I would accept this view,
the issue of granularity is certainly a fundamental one
and sets the current models well apart from the replica-
tive theories discussed earlier.
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The six models presented above represent a kind of
progression: each model adds more fine-grained dis-
tinctions, leading to improved cross-entropy perform-
ance. In fact, there are really two such progressions, one
involving the position models (Models 1, 3,4, and 5) and
the other involving the duration models (Models 2 and
6). No doubt this approach could be extended further.
For example, one could posit a position model that con-
ditioned the probability of a note on the note status of
adjacent strong beats (like Model 5) but distinguished
between different metrical positions of the same strength
(like Model 4). Some experiments in this direction are
currently underway. Given that five of the six models (all
except Model 5) are zeroth-order or first-order Markov
models, another natural extension would be to increase
the “order” of the models; for example, Model 6 could
be refined by conditioning the position of each note on
the positions of two previous notes rather than just one.
It seems likely that such refinements would result in at
least some improvement in performance; however, they
also require additional parameters. There will always be
a trade-off between complexity and fit to the data; as
noted earlier, there seems to be no objective way of opti-
mizing this trade-off.

This leads to a further question: How good are these
models? Our probabilistic method allows us to compare
the models to one another in terms of predictive power,
but it gives no way of assessing them in an absolute sense.
How good could a probabilistic model of the Essen test
set possibly be? One way to approach this issue is from
the point of view of information theory. Our simplest
model, the Uniform Position Model, assigns a per-song
cross-entropy (negative log probability) to the corpus of
62.37. This could be regarded as the amount of uncer-
tainty in the data from the point of view of a model that
knows nothing other than the proportion of beats that
have note-onsets; it could thus be seen as a kind of base-
line. By contrast, the Hierarchical Position Model assigns
a cross-entropy of 38.76; the difference between the hier-
archical model’s score and the baseline score indicates
the amount that the uncertainty of the data has been
reduced by the hierarchical model, and the model’s score
indicates the amount of uncertainty that remains. The
question is, how much further reduction a model could
reasonably be expected to obtain.

No doubt, a large amount of the uncertainty in the
data is due simply to individual variation between
melodies. Clearly, there were factors in the composition
of melodies that varied from one melody to another—
depending on the composer, the composer’s state of mind
and goals, the text being set, and so on. (Otherwise, all
the melodies in the corpus would be the same.) This

individual variation means that it is theoretically impos-
sible for a model to predict the rhythm of a melody with
probability of 1, because all melodies are different. The
models being considered here do not even attempt to
account for this individual variation. Thus, there is some
kind of limit on the reduction in uncertainty that a model
can be expected to achieve.”

As well as uncertainty in the data due to individual
variation, however, there may also be systematic regu-
larities, beyond those captured by the models presented
above, that a rhythmic model might be expected to
account for. There may for example be conventional pat-
terns, perhaps of a measure or more in length, that occur
often (again, the replicative approach comes to mind).
There are also principles of large-scale rhythmic organ-
ization that the current models do not capture—for
example, the preference for four- or eight-measure phrases,
which certainly has implications for rhythm. A further
regularity is the preference for rhythmic repetition within
songs: once a rhythmic pattern occurs, it is likely to occur
again. No doubt, a model that incorporated these factors
into its predictions could achieve a substantial improve-
ment over the models presented here. Just how much
uncertainty could be reduced in this way, and how much
is due to individual variation between melodies, remains
an open question.

Modeling Rhythm Perception

Our assumption has been that the composition of
common-practice rhythms involves general principles
of some kind; the models we have considered are hypothe-
ses as to what those principles might be. It seems clear
that the perception of common-practice rhythm, too, is
governed by general principles. In this section we consider
some ways that the rhythmic models proposed above
might be evaluated with regard to perception. The per-
ceptions I will examine are those of present-day Western
listeners (as represented by recent experimental work
and by my own intuitions). It is not obvious that the

’As mentioned earlier, the theoretically optimal model would be
a “cheating” model that assigned a probability of 1/N to each of
the N melodies in the test set. As just mentioned, even this model
does not achieve a probability of 1, due to variation between songs.
But no legitimate model could be expected to obtain even this
result. The melodies in the test set are drawn from a much larger
population of possible melodies—other existing folk melodies that
simply were not in the corpus, as well as the innumerable possible
melodies that are within the style and could have been written but
were not. Any honest model of European folk melodies would need
to leave some probability mass for these other actual and possible
melodies.



principles governing the perception of rhythm among
this population would be the same as those governing the
creation of common-practice rhythms—especially since
the music on which our models were tested was mostly
written in a different historical context (pre-twentieth-
century Europe). But in fact, as we will see, the models
that perform best with regard to compositional practice
also receive the strongest empirical support as models of
perception.

REPRESENTING METER

Much recent experimental work on rhythm perception
has been concerned in some way with meter. This work
has shown that meter plays a role in rhythm perception
in a variety of ways. Patterns that strongly support a reg-
ular meter are encoded more easily and perceived as less
complex than those that do not (Povel & Essens, 1985);
the same melody presented in two different metrical con-
texts can seem quite different (Povel & Essens, 1985;
Sloboda, 1985). Meter also affects expectation; for exam-
ple, the pitch of a note can be more accurately judged
when it occurs at a metrically expected position (Jones,
Moynihan, MacKenzie, & Puente, 2002). Meter affects
performance as well; notes in metrically similar positions
are more likely to be confused in performance errors
(Palmer & Pfordresher, 2003), and aspects of expressive
performance—timing and dynamics—also betray a sub-
tle but important effect of meter (Drake & Palmer, 1993;
Sloboda, 1983). Elsewhere I have argued that meter plays
an important role in the perception of harmony and
phrase structure, and also affects the perception of
repeated patterns in music: when considering two seg-
ments as possibly similar or “parallel,” we are strongly
biased towards pairs of segments that are similarly placed
with respect to the meter (Temperley, 1995, 2001).

In light of all the evidence for the central role of meter
in rhythm perception, a perceptual model of rhythm
must clearly represent meter in some way in order to be
plausible. Models that make no distinction at all between
different metrical positions—such as Models 1 and 2
above—seem fatally flawed in this regard. Models 3 and
5, by contrast, clearly distinguish between levels of met-
rical strength. As for Models 4 and 6, these models are
clearly superior to Models 1 and 2, in that they distin-
guish between different metrical positions and recognize
the similarity between beats of the same metrical posi-
tion. However, they are in a sense too fine-grained: they
do not capture the similarity between different positions
of the same metrical strength, such as positions 1, 3, 5, and
7 in Figure 6. Of course, some indication of metrical
strength could be added to these models. But it is surely
an advantage of Models 3 and 5 that they already represent
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metrical levels explicitly, without the need for any fur-
ther metrical information.

SYNCOPATION

Another possible way of evaluating rhythmic models with
regard to perception concerns their handling of syncopa-
tion. Syncopation is a familiar and widely used concept in
discourse about rhythm, but is difficult to define precisely.
The New Harvard Dictionary of Music (Randel, 1986)
defines syncopation as “a momentary contradiction of the
prevailing meter or pulse.” This definition seems fairly close
to the usual usage of the word. For example, a rhythmic
pattern such as that in Figure 1B would normally be
described as highly syncopated, because it seems to go
against the meter in which it is notated. However, this def-
inition lacks rigor: what exactly does it mean for something
to be a “contradiction” of the meter? Huron and Ollen
(2006) define a syncopation as “the absence of a note onset
in a relatively strong metric position compared with the
preceding note onset” (p. 212). This definition is more rig-
orous, but seems imperfect. In Figure 9C, the second note
is a weak-beat note with no onset on the following strong
beat, but I think few would consider this pattern to be syn-
copated; at most, it is a syncopation of a very mild sort.

I propose an alternative definition of syncopation that
I would argue is both rigorous and intuitively satisfac-
tory: a syncopated rhythm is one that is low in proba-
bility given the prevailing meter (by the norms of
common-practice rhythm). This is similar to the Harvard
Dictionary of Music definition: If a rhythm is low in
probability given a meter, it contradicts that meter, in
that the meter is likely to be low in probability given the
rhythm. (In Bayesian terms, if P(note pattern | meter) is
low, then P(meter | note pattern) is also likely to be low.
We return to this Bayesian view of rhythm perception
below.) One could hardly dispute that Figure 1B is much
less likely in the context of common-practice rhythmic
norms than Figure 1A. We have not yet said exactly how
P(note pattern | meter) will be determined; we will return
to this issue below. We should note right away, however,
that it will matter greatly what kind of music is used to
set the model’s probabilities. Much twentieth-century
popular music is highly syncopated; in such music, we
would expect the probabilities of some syncopated pat-
terns to be quite high. What makes a pattern seem syn-
copated, I would argue, is that it is low in probability in
relation to the norms of common-practice rhythm.

By the construal of the term proposed above, syncopa-
tion is closely related to rhythmic complexity. It seems plau-
sible to suggest that the complexity of a rhythmic pattern
is related to its probability; less probable rhythms seem
more complex. (Figure 1B above seems more complex
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than Figure 1A, for example.) However, complexity also
may be affected by factors other than syncopation,
notably the amount of repetition in a pattern. A repeti-
tive pattern is less complex—and one could have a syn-
copated pattern that was extremely repetitive. So
complexity and syncopation are related, but not equiv-
alent. It might be said, perhaps, that syncopation repre-
sents the aspect of rhythmic complexity that does not
relate to repetitiveness.

In order to flesh out our probabilistic definition of syn-
copation, we need a way of calculating P(note pattern |
meter). In fact, we already have addressed this problem.
Each of the models presented earlier can be used to cal-
culate P(note pattern | meter); this is precisely the quan-
tity that was used to evaluate the models with regard to
common-practice rhythmic composition. Therefore, each
model yields a measure of syncopation that could be
applied to any given rhythmic pattern. The question is,
which of these measures of syncopation corresponds most
closely with our intuitive understanding of the term?

We can dispense quite easily with Models 1 and 2, as
they do not consider meter at all. (By these models, a
rhythmic pattern is equally likely given any meter, and
thus cannot be said to contradict one meter more than
any other.) With Models 3 and 4, we gain an awareness
of distinctions between different positions within the
measure, and this allows some recognition of syncopa-
tion. However, the ability of these models to recognize
syncopation is limited. It can be seen that neither model
pays any attention to the context of a note, only to its
metrical position; and in some cases context is impor-
tant. Return once more to Figure 5. According to Models
3 and 4, Figures 5A and 5B are equivalent: Each one has
two notes at position 0 in the measure, and one note each
at positions 3, 4, and 6. Yet Figure 5B is surely more syn-
copated than Figure 5A. Figure 5B features a note on a
weak (eighth-note) beat with no note on either adjacent
beat, which (in terms of the Harvard Dictionary defini-
tion) seems to contradict the meter; in Figure 5A, the
weak-beat note is followed by a note on the strong beat.

We now consider Models 5 and 6. Both of these mod-
els are of course sensitive to metrical position. And both
models also are sensitive to the context of a note, though
in different ways. The cross-entropy assigned by each
model to Figures 5A and 5B (assuming the Essen param-
eters for both models) is shown in Table 3. (We assume
that there is a note on the downbeat of the following
measure; this is necessary, since Model 5 requires a span
with downbeats at both ends.) Both models succeed in
assigning a lower cross-entropy (higher probability) to
Figure 5A than to Figure 5B, but for different reasons.
For Model 6, Figure 5B is low in probability because of

TABLE 3. Cross-Entropy Assigned to Figures 5A and 5B by the Hierarchical
Position Model and the First-Order Metrical Duration Model.

Hierarchical First-Order Metrical
Position Model Duration Model
Figure 5A 8.13 6.95
Figure 5B 12.00 13.06

the transition between the second note and the third;
given a note at position 3 of the measure, it is extremely
unlikely that the following note will be at position 6
(the probability of this is just .001). For Model 5, Figure
5B is low in probability because the second note is an
“unanchored” Level 1 note—there is no note on either
the previous or following strong beat (this has a prob-
ability of .005).

Can we distinguish between Models 5 and 6 in their
handling of syncopation? The patterns in Figure 15 offer
a possible way. For Model 6, what matters is the metrical
“bigrams”—positions of pairs of adjacent notes. Figure
15A has the bigrams 0-4, 4-5, 5-0, 0-5, 5-6, 6-0; Figure
15B has 0-5, 5-0, 0-4, 4-5, 5-6, 6-0. It can be seen that the
two patterns contain exactly the same bigrams; their order
is different, but this is irrelevant for Model 6. Thus, for
Model 6, these two patterns are equivalent in probabil-
ity. For Model 5, however, they are not; there are several
differences between the two patterns, such as the fact that
the second contains an unanchored L1 note (the second
note), while the first does not. Because of these differ-
ences, Model 5 assigns different probabilities to the two
patterns, assigning a lower cross-entropy to Figure 15A
(12.44) than Figure 15B (14.38). It seems to me this is
intuitively correct; Figure 15B does seem more synco-
pated than Figure 15A. While this may be a rather con-
trived example, it suggests that are at least some situations
where Model 5 provides a better model of syncopation
than Model 6.

A small test was done to assess the models’ ability to
predict perceived rhythmic complexity. Povel and Essens’
classic study (1985) presents an experiment in which sub-
jects heard 35 short rhythmic patterns (shown in their
Table 2) and had to reproduce them. The patterns were
constructed from permutations of the durations
1/1/1/1/1/2/2/3/4, with the “4” at the end; as the authors

8Although Model 5 judges Figure 15B as more syncopated than
Figure 15A, it does not seem to do so for the right reason. What seems
syncopated about Figure 15B is the unanchored L1 note (the second
note in the pattern); but in fact, using the Essen parameters (as we are
here), Model 5 gives the same probability for an unanchored L1 note
as a pre-anchored one (.005).
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FIGURE 15. These two patterns are equivalent under the First-Order
Metrical Duration Model, but not under the Hierarchical Position Model.
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suggest, this long interval at the end of the pattern tends
to induce a meter with beats at the beginning and end
of the interval (though they caution that some of the
more complex patterns may not have clearly induced any
meter). Two of their patterns are shown here in Figure 16.
With patterns as short and constrained as these, there
clearly is not much room for repetition; thus, by the cur-
rent view, differences in complexity should be largely due
to syncopation. Povel and Essens examined the average
deviation (in relation to the correct interonset intervals)
in subjects’ reproductions of each pattern and present
this in a graph (their Figure 9); this can be taken as a
measure of reproduction accuracy, or more precisely
inaccuracy, and hence, as an indication of complexity. As
the original data are no longer available (Povel, personal
communication), I read the approximate values (round-
ing off to the nearest 6 ms) from the graph itself. I then
encoded the patterns (treating “1” as the eighth-note and
assuming the meter indicated in Figure 16), submitted
them to the six models to obtain the cross-entropy for
each pattern, and looked at the correlation between each
model’s cross-entropy judgments and reproduction inac-
curacy. The results are shown in Table 4. For Models 1
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FIGURE 16. Two rhythmic patterns from Povel and Essens (1985), Table
2: (A) no.1and (B) no. 35.
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TABLE 4. Correlations between Rhythmic Models' Cross-
Entropy Judgments and Reproduction Inaccuracy for 35 Patterns
Used in Povel & Essens (1985).

Model r
1. Uniform Position Model 0
2. Zeroth-Order Duration Model 0
3. Metrical Position Model .61
4. Fine-Grained Position Model .65
5. Hierarchical Model .76
6. First-Order Metrical Duration Model 71

and 2, all 35 patterns receive the same cross-entropy, thus
the correlation with the experimental data is zero. The
remaining four models exhibit the same ordering found
in modeling the Essen corpus, except that the hierarchi-
cal model outperforms the first-order model. While fur-
ther testing is necessary, this small experiment gives some
encouraging support for the hierarchical model with
regard to the perception of rhythmic complexity.

MODELING METER-FINDING
One very basic and important aspect of rhythm percep-
tion is the identification of meter. This process has been
the subject of a huge amount of research, both experi-
mental and computational (for surveys, see Temperley,
2001, and Gouyon & Dixon, 2005). In recent years, sev-
eral authors have approached this problem from a prob-
abilistic viewpoint (Cemgil, Desain, & Kappen, 2000;
Raphael, 2002; Temperley, 2007). In probabilistic terms,
the meter-finding problem can be defined as the prob-
lem of determining the most probable metrical structure
given a pattern of notes. Bayes’ Rule then tells us that

(meter | note pattern) < P(note pattern | meter)
X P(meter) (11)

The meter that maximizes the right side of this expres-
sion will be the most probable meter given the note pat-
tern (Temperley, 2007).

As noted with regard to syncopation, the first term on
the right side of expression (11) is the quantity used in
the experiments presented earlier to test models of com-
positional practice: each of our models offers a way of
calculating the probability of a note pattern given a meter
(though the parameters of the models were only speci-
fied for 4/4 meter). As for the second term, this captures
the fact that some meters may simply be more probable
than others: For example, if 5/4 meter occurs very rarely,
we should probably not infer it unless there is over-
whelming evidence in its favor.

If we assume that listeners can generally infer the cor-
rect meter for common-practice melodies, we could test
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our six models by converting them into meter-finding
models and testing their ability to identify meters cor-
rectly. (Models 1 and 2, having no knowledge of meter,
would clearly fail at this task.) This would certainly be
of interest, and would provide another way of evaluating
the relative plausibility of the various models; it would,
however, be a major undertaking. A meter-finding model
must determine not only the time signature of the meter,
but also the phase: that is, if a melody is in 4/4 time, does
the first note occur on the first eighth-note beat of the
measure, the second, or some other beat? For each model,
the probabilities of these different time signatures and
phases would have to be determined. “Likelihood” func-
tions—defining P(note pattern | meter)—would also
have to be defined, not only for 4/4 time (as we have
already done) but for other time signatures as well. In
addition, for a meter-finding model to be at all realistic,
it should not assume that the input is “quantized”—
played with perfectly regular timing; it should allow for
beats to be somewhat irregularly spaced, as they are in
real music.

In fact, several prior meter-finding models could be
seen as implementations of the generative models pro-
posed above (or the principles behind them). The basic
principle of Model 3—that the probability of a note at a
beat depends on its metrical strength—is implicit in many
meter-finding models, and is reflected explicitly in the
probabilistic models of Cemgil et al. (2000) and Temperley
(2007). In recent work, I have proposed a meter-finding
system based on the Hierarchical Position Model
(Temperley, 2009). The First-Order Metrical Duration
Model has also been implemented in a meter-finding
system by Raphael (2002). However, the implementation
and testing of these models is so different that it is not really
possible to compare them. Suffice it to say that the com-
positional models presented earlier (at least, Models 3,
4,5 and 6) could be used for meter-finding, and this
might offer another way of deciding between them as
models of perception.

The Bayesian view suggests a profound connection
between rhythm production and perception. By this view,
in order to infer the metrical structure for a rhythmic pat-
tern, the listener must know the probabilities of different
metrical structures and also the probabilities of different
patterns given those structures. Of interest in this con-
nection is a study by Sadakata, Desain, & Honing (2006),
which uses a Bayesian perspective to model the perception
of rhythm. The study focuses on three-onset patterns, in
which the first and third onsets fall on tactus beats (assum-
ing tactus intervals of one second); the placement of the
second onset divides the interval into two notes. We can
represent such patterns by identifying the length of the

first note as a proportion of the larger interval; thus 1/4
implies the rhythm sixteenth-note / dotted-eighth. Corpus
analysis was used to find the prior probability of differ-
ent beat divisions in notated music, and production data
were analyzed to find the distribution of performed
rhythms given different notated rhythms. Using Bayesian
logic, these data were then used to predict rhythmic
perception, and the model’s predictions were compared
to data from perception experiments in which subjects
were played three-onset patterns and asked what nota-
tion they implied; the predictions fit the data very closely.
The model explains certain apparent asymmetries between
production and perception data. For example, the pat-
tern 2/5 is typically performed at close to its “correct” tim-
ing, but a performed rhythm with this timing is much
more likely to be perceived as 1/3; according to the model
of Sadakata et al., this is because a 1/3 tactus division is
much higher in prior probability than 2/5.

It could be said that the model of Sadakata et al. (2006)
entails a probabilistic model of rhythm composition, in
that different probabilities are assigned to different notated
tactus divisions. The model is somewhat similar to our
hierarchical model, in that it assumes a context of two
strong beats with note onsets and states the probability
for certain patterns occurring on low-level beats in
between. The fit between the model and perception data
is certainly impressive and is a strong general validation
of the Bayesian approach to rhythm. The model is clearly
limited in that it only allows one onset between two strong
beats; this limitation could be addressed by adding further
patterns, but eventually this could lead to a huge prolif-
eration of patterns (and parameters). As the authors them-
selves note, “Surely listeners do not memorize a huge
number of distributions for different complex rhythms.
Perception of complex rhythm must be based on simple
rhythm in a principled way.” The models proposed above
offer some possibilities as to how this might be done.

Conclusions

The main aim of this study has been to evaluate models
of common-practice rhythm, focusing especially on the
compositional processes involved in their creation. Six
models were considered, and each one was evaluated as
to the probability it assigned to the rhythms in two cor-
pora of common-practice pieces in 4/4 time: a corpus of
European folk songs and a corpus of Mozart and Haydn
string quartets. Two models clearly performed the best at
this task: the Hierarchical Position Model, which gener-
ates notes in a hierarchical fashion conditional on the
note status of neighboring strong beats, and the First-
Order Metrical Duration Model, which chooses metrical



positions for notes based on the current position and the
position of the previous note. The first-order model per-
formed slightly better than the hierarchical model with
regard to the sheer probability assigned to the corpora,
but is also significantly more complex (requiring more
parameters), particularly when a 16th-note level is added
and when the models are extended to other time signa-
tures.

We also considered these models as models of percep-
tion. Given the crucial importance of meter in many
aspects of rhythm perception, models that explicitly
encode metrical levels (such as the hierarchical model)
seem to have an advantage over those that do not (such
as the first-order model). With regard to syncopation, it
was argued that both the hierarchical model and the first-
order model predict syncopation quite well but that the
hierarchical model may have a slight edge in this regard;
a small test on experimental data showed an advantage
for the hierarchical model. Finally, I noted that proba-
bilistic models of rhythm may be construed as meter-
finding models, and that this provides another way of
evaluating them. While both the hierarchical model and
the first-order model have been incorporated into meter-
finding models and seem quite successful, there has not
yet been any attempt to compare them; this would be an
interesting project for the future.

My conclusion is that, on balance, the hierarchical model
is the most plausible of the models we have considered,
with regard to both composition and perception. This is—
as already stated—really a matter of opinion, and depends
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on how the various sources of evidence considered above
are weighted. Clearly, both the Hierarchical Position Model
and the First-Order Metrical Duration Model are serious
contenders with many virtues; further work is needed to
decide between them conclusively.

As well as the evaluation of specific models, a second,
broader aim of this study has been to argue that the devel-
opment and evaluation of models of composition is an
appropriate and worthwhile project for the field of music
cognition. Models of composition can be evaluated, I have
suggested, by examining how well they predict composi-
tional data, and probabilistic methods are extremely well-
suited to this task. As explained earlier, no claim is being
made that any of the models proposed here are complete
models of the compositional process, nor do they imply
any assumption that “composition is probabilistic” (what-
ever that might mean). But they nonetheless entail strong
and substantive claims about the compositional process;
and probabilistic methods allow for the testing of these
claims in quantitative, objective ways.
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