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TWO PROBABILISTIC MODELS OF MELODIC INTERVAL

are compared. In the Markov model, the ‘‘interval prob-
ability’’ of a note is defined by the corpus frequency of
its melodic interval (the interval to the previous note),
conditioned on the previous one or two intervals; in the
Gaussian model, the interval probability is a simple
mathematical function of the size of the note’s melodic
interval and its position in relation to the range of the
melody. In both models, this interval probability is then
multiplied by the probability of the note’s scale degree
to yield its actual probability. The two models were
tested on four corpora of tonal melodies using cross-
entropy. The Markov model yielded a somewhat lower
(better) cross-entropy than the Gaussian model, but is
also much more complex, requiring far more parameters.
The models were also tested on melodic expectation data,
and on their ability to predict the distribution of intervals
in a corpus. Possible ways of improving the models are
discussed, as well as their broader implications for music
cognition.
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P ROBABILISTIC MODELING HAS LATELY BECOME

an important and influential approach in the
field of music cognition, as it has throughout

cognitive science. Probabilistic methods have been
successfully applied to a number of problems in music
perception, such as rhythm perception (Sadakata,
Desain, & Honing, 2006), key-finding (Temperley,
2007), harmonic analysis (Raphael & Stoddard, 2004),
and segmentation (Bod, 2002; Pearce & Wiggins, 2012).
The probabilistic approach has a number of virtues: it
can successfully handle ambiguous input, and can
reflect the ambiguous or uncertain mental representa-
tion of such input; it can represent perceptual con-
straints or preferences of a gradient nature; and it can
simulate the process whereby perception is shaped by
regularities in the environment. Probabilistic methods

have proven useful not only for modeling cognition but
also for practical problems of music information
retrieval, such as style identification (Chai & Vercoe,
2001) and transcription (Klapuri & Davy, 2006).

While the problems mentioned in the previous para-
graph relate to the perception and processing of music,
probabilistic methods have also been applied to the
modeling of music itself (Conklin & Witten, 1995;
Mavromatis, 2005; Pearce & Wiggins, 2004; Temperley,
2010). A probabilistic model can be used to assign
a probability to a piece of music, or some aspect of it,
such as a sequence of pitches or durations. This is useful
in at least two ways. First, it provides a way of modeling
the cognitive processes of composition—the factors and
procedures involved in the creation of music. Under
certain assumptions (as discussed further below), the
probability assigned by a model to a body of data can
be taken as an indicator of the probability of the model
given the data. Competing models of the compositional
process can therefore be evaluated by the probabilities
that they assign to the music under investigation. No
probabilistic model (to my knowledge) has claimed to
incorporate all the factors involved in the compositional
process; but given one or more factors that are known to
play a role in that process, probabilistic methods can be
used to determine the best (most cognitively plausible)
way of modeling them. A second use of probabilistic
models of music is in the modeling of expectation. It
seems reasonable to suppose that, when listeners form
expectations for the continuation of a musical context
(such as a melody), they are evaluating the probabilities
of possible continuations, in combination with the pre-
vious context. Probabilistic models can be used to sim-
ulate this process.

Most probabilistic models of music have focused on
melody—the assignment of probabilities to a single
sequence of notes—and I will also do so here. While
probabilistic models of melody have considered a variety
of musical dimensions, two factors have emerged as
particularly important. One is interval: the probability
of note within a melodic line depends in part on the
resulting interval in relation to the previous note. The
other is scale degree, that is, pitch-class in relation to
the tonic: some scale degrees are more probable than
others, based on their position in the scale of the relevant
tonal system. Most models of melody—probabilistic or
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not—have incorporated these two factors in some form.
(One well-known exception is the Implication-
Realization theory of Narmour [1990], which focuses
on melodic shape rather than tonal factors. But even
Narmour acknowledges the importance of tonal factors,
and those implementing his theory, such as Schellenberg
[1996], have found it necessary to include them.)

The current study compares two models reflecting
alternative approaches to the modeling of melodic inter-
val; I will call these the Markov model and the Gaussian
model. In the Markov model, the probability of an inter-
val is determined by its observed frequency in a corpus,
perhaps conditional on the previous one or more inter-
vals. The Markov model represents a modeling para-
digm known as the Markov approach or n-gram
approach. This approach has been highly influential in
recent music research, most notably in the context of
multiple-viewpoint models, a strategy pioneered by
Conklin and Witten (1995) and further developed by
Pearce and Wiggins (2004, 2006). In a multiple-
viewpoint system, the probabilities for individual fea-
tures of a note (perhaps conditioned on the features of
previous notes) are combined to yield a single probabil-
ity for the note. Multiple-viewpoint studies have often
included interval and scale degree as features, along
with numerous others such as absolute pitch, contour,
rhythmic attributes, and more complex features such as
interval to the first note of the measure.

The second, Gaussian, model, is also probabilistic. In
this model, however, the probabilities of intervals are
defined not by their frequency in a corpus, but rather,
by the general principle of pitch proximity: each pitch in
a melody tends to be close to the previous pitch, so that
small intervals are more frequent than large ones. This is
a well-known principle of music theory (often reflected
in compositional teaching, e.g., Gauldin 1985, p. 17;
Aldwell & Schachter, 2003, p. 69) and auditory psy-
chology (Deutsch, 1999); it has also been confirmed
statistically in a variety of musical styles (Huron, 2006;
von Hippel, 2000). Thus the probability of an interval
can be defined as a simple mathematical function of its
size; in the current model, a Gaussian function (i.e., a
normal distribution) is used. The probability of an inter-
val appears to depend on its context in some ways; for
example, a large interval is usually followed by an interval
in the opposite direction—a phenomenon known as
‘‘post-skip reversal.’’ Narmour’s Implication-Realization
theory (1990) includes an explicit preference for large
intervals to be followed by a change of direction, and
quantifications of the theory have included this prefer-
ence as well (Cuddy & Lunney, 1995; Schellenberg, 1996,
1997). It has also been suggested, however, that post-skip

reversal may arise simply from constraints on range;
a large interval will tend to take a melody near the edge
of its range, thus naturally favoring a return to the cen-
ter (von Hippel & Huron, 2000). The Gaussian model
presented here reflects this latter approach, assigning
higher probabilities to notes that stay within the previ-
ously established range.

Most previous models of melody have found that it is
desirable to incorporate scale-degree information in
some way, and I will do so here. Scale-degree probabil-
ities are simply modeled in a statistical fashion based
on their corpus frequency, in both the Markov and
Gaussian models. The possibility of a Markov approach
to scale degree (conditioning scale degrees on previous
scale degrees) will also be considered.

Figure 1 shows the distribution of melodic intervals in
the Essen Folksong Collection, a corpus of over 6,000
European (mostly German) melodies (Schaffrath,
1995). Log (base 2) probabilities are used, to bring out
distinctions between small values. This figure gives
insight into the motivation for both the Markov and
Gaussian approaches to melodic interval. The principle
of pitch proximity is clearly reflected, in that larger
intervals are generally less frequent than smaller ones.
There are also many local ups and downs in the distri-
bution; for example, whole steps (þ2 and -2) are more
than twice as common as half steps (þ1 and -1), despite
being larger. These local fluctuations might seem difficult
to capture by any simple rule, thus favoring a Markovian
approach that represents the frequency of each interval. It
is also important, however, to consider the role of scale
degree. It is a well-known fact that chromatic intervals
vary in their frequency within the diatonic scale: consid-
ering just a one-octave range (C to C) in C major, there
are five whole steps (C-D, D-E, F-G, G-A, A-B) but only
two half steps (E-F, B-C). Thus, given that diatonic scale
degrees tend to be more frequent than non-diatonic ones,
the greater frequency of major over minor seconds may
be due, at least in part, to the fact that stepwise motion
along the diatonic scale is more likely to give rise to major
seconds than minor seconds. Similar reasoning might be
applied to other irregularities in the interval distribution.
One of the goals of the current study is to investigate how
well the distribution of intervals in tonal music can be
explained by the principle of pitch proximity in combi-
nation with a preference for certain scale degrees over
others.

In what follows, the Markov and Gaussian models are
tested on their ability to predict three kinds of data: (1)
sequential data from melodic corpora, (2) experimental
data from melodic expectation studies, and (3) the dis-
tribution of melodic intervals shown in Figure 1. I begin
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by describing the models in more detail and explaining
the general testing strategy.

THE MODELS AND THE TESTING STRATEGY

The input to both models is simply a sequence of
pitches, in integer notation (middle C ¼ 60, etc.). No
rhythmic information is included. The models also
require scale degree information; that is, the relation-
ship of each note to the tonic. A simple way to provide
this is to transpose all melodies down to the key of C, so
that, for example, pitch 60 (plus or minus any multiple
of 12) is always scale degree 1. (Major scale degrees will
be represented here by integers 1 through 7, and other
degrees as altered versions of these, using the most
common spelling of each: #1, b3, #4, b6, and b7.) The
corpora used for training and testing all indicate the key
of each piece, so this can easily be done. (For modeling
expectation data, a different approach is required, as will
be explained later on.) Since the models considered
below make no use of absolute pitch information, it
makes no difference whether the melodies are trans-
posed up or down. The input also indicates whether
each melody is in a major or minor key (MA or MI is
inserted at the beginning of each melody); how this
information is used will be explained below.

The Markov model computes a probability for each
note based on its scale degree and its interval to the
previous note. It begins by computing separate proba-
bilities for the interval and the scale degree. Each of
these two probabilities is computed in a Markovian
fashion, conditioned on features of the previous
notes—intervals or scale degrees, respectively. The order

of the Markov model—that is, the number of previous
events on which each event is conditioned—may be
zero, one, or two; all of these possibilities will be consid-
ered. These are known as zeroth-order, first-order, and
second-order models, respectively. They are also known
as unigram, bigram, and trigram models; these terms
refer to melodic sequences of one, two, or three elements,
and thus indicate the size of the melodic units (‘‘n-
grams’’) being counted. Higher-order n-gram models are
also possible, but will not be considered here.

The model’s probabilities are set by the counts of
events and contexts in a corpus. For example, if an
interval of -2 occurs 100 times in a corpus and is
followed by an interval of -1 on 20 of those occurrences,
the first-order probability of -1 given a previous interval
of -2 would be 20 / 100 ¼ .2. Given the interval and
scale-degree probabilities, the model then simply multi-
plies them together. In effect, this favors pitches whose
interval and scale-degree probabilities are both rela-
tively high. The resulting values are not true probabil-
ities, as the values for all possible pitches in a given
context do not sum to 1; the values are divided by
a normalizing constant (the sum of all of them) so that
they do sum to 1, and the value for the pitch in question
is the probability assigned to it. This model essentially
adopts the approach of multiple-viewpoint modeling
(Conklin & Witten, 1995), and may be regarded as
a simple model of that kind; it is not, to my knowledge,
identical to any model that has been specifically proposed
previously, though some studies have considered many
combinations of features and may well have considered
this one. Combining distributions by multiplying them
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FIGURE 1. The distribution of melodic intervals in the Essen Folksong Collection. Probabilities are shown in log base 2.
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together is a standard approach in multiple-viewpoint
modeling (e.g., Pearce, Conklin, & Wiggins, 2005; Pearce
& Wiggins, 2006), though other approaches have also
been used.

The Gaussian model, likewise, computes a probability
for each note based on its scale degree and intervallic
context, but does so in a rather different way. The prob-
ability of an interval is computed using two functions.
One is a proximity profile, a normal distribution cen-
tered around the previous pitch; another is a range pro-
file, also a normal distribution, centered around the
mean pitch of all the preceding notes in the melody
(this is taken as an approximation of the range of the
melody). The interval probability of a pitch is given by
its position in these two normal distributions, multi-
plied together. Multiplying two normal distributions
creates a third normal distribution whose mean is
between the means of the distributions being multiplied;
the effect of this is to favor notes that are close to both
the previous pitch and the center of the melody’s range.
This interval probability value is then multiplied by the
scale-degree probability of the note, which is simply the
zeroth-order Markov probability of that scale degree.
(I will refer to a zeroth-order scale-degree distribution
a ‘‘scale-degree profile.’’) Formally:

PðEnÞ ¼ NðEn; En�1; vpÞ � NðEn; Mn; vrÞ � SDðEnÞ=Z

ð1Þ

where En is a possible pitch for the nth note of the
melody; N(En; m, v) refers to the value of En in a normal
distribution with mean m and variance v; En-1 is the
previous pitch; Mn is the mean pitch of the melody up
to (but not including) the current note; vp and vr are the
variances of the proximity and range profiles; SD(En) is
the value of the current pitch in the scale-degree profile;
and Z is a normalizing constant, to ensure that the
values for all possible pitches sum to 1. In effect, this
favors pitches that are close to the previous pitch, close
to the mean pitch of the melody, and probable in terms
of their scale degree. This model is essentially that pro-
posed in Temperley (2007, 49–64; 2008); the main dif-
ference is that the mean of the range profile in that
earlier work was computed in a more complex way
(taking into account that it is likely to be near a certain
point in absolute terms).

Given these models, with the necessary parameters
defined, it is straightforward to compute the probability
of a note in a given context. The probability of a melody,
or indeed an entire corpus, can then be computed as the
product of the probabilities of all the notes. Since the
resulting probabilities can be very small numbers, it is

convenient to represent them by logarithms. Dividing
the total value for the corpus by the number of notes
produces the ‘‘per-note log probability’’ of the data given
the model; since the log of a probability is always neg-
ative, we add a negative sign to make it positive. This
produces a quantity known as cross-entropy:

cross-entropy ¼ �1=Nð Þ
X

n

log2Pm Enð Þ ð2Þ

where N is the number of events in the corpus and
Pm(En) is the probability assigned by the model to the
nth event.

Cross-entropy—representing the probability that
a model assigns to a body of data—gives an indication
of how well the model fits or predicts the data, and thus,
how good it is as a model of the underlying process that
gave rise to the data. Several prior studies have used
cross-entropy to evaluate models of melody (Conklin
& Witten, 1995; Pearce & Wiggins, 2004; Temperley,
2010). The logic behind this approach is simple and
elegant. If two models are equal in prior probability—
that is, if they seem equally probable before the data is
seen—it follows mathematically that the one yielding
lower cross-entropy (higher probability) is the more
probable one given the data. From Bayes’ rule:

P model j datað Þ ¼ P data j modelð ÞP modelð Þ=P datað Þ
ð3Þ

P(data), the overall probability of the data in combina-
tion with all possible models, is the same for any given
model, so

P model j datað Þ a P data j modelð ÞP modelð Þ ð4Þ

where ‘‘/’’ means ‘‘is proportional to.’’ And if the prior
probability P(model) is the same for all models:

P model j datað Þ a P data j modelð Þ ð5Þ

Of course, models may not be equal in prior probability;
in the current case, there may well be other considera-
tions (such as historical or psychological evidence about
the compositional process) that lead us to favor one
model over another a priori. Another general consider-
ation that may affect the prior probability of a model is
simplicity; other things being equal, a simpler model is
generally considered more plausible. The number of
parameters required by a model is often taken as a mea-
sure of its complexity (Akaike, 1974; Mavromatis, 2005;
Schwarz, 1978), and I will do so here. In computational
terms, the kind of complexity at issue here is space com-
plexity, the amount of memory needed (Hartmanis &
Stearns, 1965); this should not be confused with time
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complexity, the amount of computing time required,
which will not be considered here.

There is frequently a trade-off between simplicity and
goodness-of-fit; a model requiring more parameters will
often fit the data better (though not always). But there is
no objective, widely accepted method of balancing sim-
plicity against goodness-of-fit; how one does this may
well depend on the specific purpose for which the model
is being used. In what follows, I report goodness-of-fit
and complexity measures for each model, and consider
one possible way of combining them into a single mea-
sure; but ultimately, I leave it to the reader to decide how
to balance these criteria.

A study such as this requires training data, to set the
parameters of the models. These parameters include the
scale-degree probabilities of both models and the inter-
val probabilities for the Markov model. The variances
for the Gaussian model’s normal distributions must also
be set (a higher variance creates a flatter distribution).
When testing on corpus data, it is appropriate that the
training data be stylistically similar to the test data, but
it is important to use different training data from that
used for testing. We wish to prevent the model from
‘‘overfitting’’—giving high probabilities to events that
happen by chance to occur in the training set; testing
the model on its training data rewards overfitting. Here
I adopt the method of cross-validation. Each corpus is
divided into ten equal portions, with nine of the por-
tions used for training and the remaining one for test-
ing; the process is repeated ten times, using a different
portion for testing each time, and the model’s score is
the average cross-entropy across the ten test sets.

The cross-entropy approach gives us a method of
testing our models on corpus data. For expectation data,
a somewhat different approach is required. Here the
data to be modeled are human judgments of the expect-
edness of notes in a given context; we evaluate a model
on how well the probabilities it assigns to the notes
match the expectedness judgments. This will be
explained in greater detail below.

Certain aspects of each model were varied, with the
aim of finding the optimal performance of each model.
For the Markov model, both the interval and scale-
degree probabilities can be computed using zeroth-,
first-, or second-order probabilities; different orders for
the two components were also considered, creating nine
possible combinations. The probabilities for all of these
versions of the model were set from training data, by
counting interval or scale-degree unigrams, bigrams, or
trigrams, as appropriate. For the Gaussian model, the
variances of the two normal distributions were opti-
mized. The logical way of doing this is by choosing the

values that yield lowest cross-entropy on the training
data. This was tried with different training sets; using
different training portions within the same corpus
always yielded the same optimal values (only integer
values were tried). Thus, for each corpus, the optimal
values were determined from one training portion and
these were used for all the tests on that corpus.

One problem is how to handle events seen in testing
that have never been encountered in training. Strictly
speaking, the probability of these events should be zero,
but in that case their negative log probability (and there-
fore that of the whole corpus) would be infinite. This is
mainly a problem for the Markov model, since there
may well be interval trigrams (or even bigrams or uni-
grams) seen in testing that were not encountered in
training; a similar problem may occur with scale-
degree n-grams. (It is not a problem for the Gaussian
model, as long as each scale degree has been encoun-
tered at least once.) Here I adopt an extremely simple
solution: when a trigram seen in testing has not been
seen in training, the model uses (or ‘‘backs off ’’ to) the
bigram probability instead; when a bigram has not been
seen, it backs off to the unigram; when an interval uni-
gram has not been seen (which is extremely rare), it
backs off to the octave. This method is not strictly legit-
imate, since the probability of an event is only set once it
is seen, and the probabilities of all possible pitches cal-
culated in this way may sum to slightly more than 1. In
effect, this approach is over-generous to the Markov
model, slightly overstating the true probability that it
assigns to the corpus. Because of the large size of the
training sets, however, backoff rarely occurred: with the
Essen corpus, for example, only 1.2% of the interval
trigram tokens encountered in testing were unseen in
training. Alternative backoff methods were also tried
(such as computing each trigram probability as
a weighted sum of observed trigram and bigram prob-
abilities), and it was found that this resulted in very little
difference in cross-entropy.

Another problem for both models is what to do at the
beginning of the melody. Even the zeroth-order Markov
model requires at least one previous note to define the
interval of the current note; the second-order version of
the model requires three preceding notes. The Gaussian
model, too, requires preceding notes for the proximity
and range profiles to be defined. There are good ways of
solving this problem; one could, for example, define the
probability of the first note with a distribution over
absolute pitches rather than intervals. It seemed unlikely
that adding this feature would greatly alter the relative
performance of the models. In the interest of simplicity,
I evade the problem by skipping the first three notes of
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each melody in the cross-entropy calculations (but
including them in the contexts for following notes,
where necessary).

One final issue concerns major and minor keys. The
reason for incorporating scale-degree profiles into the
models is that the probability of a note depends on its
position in the current scale. But the current scale depends
not only on the tonic but also on whether the key is major
or minor; therefore a probabilistic model might perform
better if it possessed this information and applied a major
or minor scale-degree profile accordingly. It is not obvious
that this would improve performance; dividing the data
into major and minor portions leaves less training data for
each scale-degree profile, which may result in less optimal
values. But experiments (not reported in detail here)
showed that both the Markov model and the Gaussian
model yielded better performance when major and minor
melodies were separated; therefore this was done in the
tests reported below.

TESTING ON SEQUENTIAL CORPUS DATA

Four corpora of melodies were used to test the two
models: (1) The folksong corpus consists of 6,208 songs
from the Essen Folksong Collection (Schaffrath, 1995).
(2) The chorale corpus consists of 159 Bach chorale
melodies.1 (3) The classical corpus contains 9,788
instrumental melodies from Barlow and Morgenstern’s
(1948) Dictionary of Classical Themes, encoded in
Humdrum notation by David Huron. (4) The rock cor-
pus consists of 162 melodies from songs on Rolling
Stone magazine’s list of the ‘‘500 Greatest Songs of All
Time’’ (Rolling Stone, 2004; Temperley & de Clercq,
2013). (The entire rock corpus contains 200 melodies;
songs with modulations were excluded, as were songs
containing no melodic information, such as rap songs.)
In the folksong, chorale, and classical corpora, melodies
are labeled with major and minor keys; different scale-
degree profiles for major versus minor melodies were
learned in training and applied in testing. In the rock
corpus, the melodies are labeled with tonal centers but
not with major and minor (since this distinction is
problematic in rock), thus a single set of scale-degree
probabilities was applied to all songs.

Both the chorale corpus and parts of the folksong
corpus have been used in other melody-modeling
research. Conklin and Witten (1995) measured cross-

entropy on a set of five chorale melodies, using a multi-
ple-viewpoint system with a variety of features, achieving
a per-note cross-entropy of 1.87. Pearce and Wiggins
(2004, Table 8) used the entire chorale corpus and parts
of the Essen Folksong Collection, using a Markov model
that considered only absolute pitch; they achieved cross-
entropies of 2.35 for the chorale corpus and values
between 2.11 and 2.69 for different portions of the Essen
corpus. Comparison of those models with the current
ones is difficult, due to the many differences; as stated
earlier, my aim is to compare approaches to the modeling
of interval in a controlled fashion.

For the Markov model, each corpus was tested with
zeroth-order, first-order, and second-order versions of
the interval and scale-degree components, in all combi-
nations. For the scale-degree component, a uniform dis-
tribution was also tried, assigning equal probabilities to
all scale degrees; in effect, this version of the model
calculates probabilities by interval alone. (It is not pos-
sible for the model to calculate probabilities by scale
degree alone, since this specifies only pitch-class, not
pitch.) Table 1 shows the complete results of this for
the Essen corpus. Each test result indicates the cross-
entropy, that is, the per-note negative log probability
that the model assigns to the data. It can be seen that
the best performance (lowest cross-entropy) occurs
with a second-order interval model and a zeroth-
order scale-degree model. The Gaussian model was
tested with different combinations of proximity vari-
ance and range variance (trying integer values only).
Table 2 shows, for all four corpora, the best version (com-
bination of scale-degree and interval orders) of the Mar-
kov model, the best variance values for the Gaussian
model, the cross-entropy for each of the two models,
and the ratio between their cross-entropies. For the
Markov model, the table shows that the combination
of a second-order interval model and a zeroth-order
scale-degree model is optimal for all four corpora; con-
sidering bigram and trigram scale-degree probabilities
yielded no benefit.

On all four corpora, the cross-entropy of the Markov
model is lower than that of the Gaussian model. The

TABLE 1. Cross-Entropy Values for the Markov Model on the
Folksong Corpus for Different Orders of Interval and Scale-Degree.

Interval order

Scale-degree order

Uniform Zeroth First Second

Zeroth 3.35 2.85 2.91 2.78
First 2.93 2.67 2.74 2.75
Second 2.69 2.56 2.65 2.68

1 Both the folksong and chorale corpora were acquired from the
Musedata archive at the Center for Computer Assisted Research in
the Humanities (www.musedata.org). The complete corpus available
at the archive contains 185 chorales, but this includes 26 duplicate
melodies which were removed.
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difference varies between 6% and 16%. But simplicity
must also be considered. This raises the question of how
many parameters are required by each model. For an
alphabet of symbols of size N, a zeroth-order model
requires N parameters, a first-order model requires
N2, and a second-order model requires N3. For scale
degrees, the alphabet size is 12; there are two scale-
degree profiles (major and minor), thus 24 parameters
are required for both models (assuming zeroth-order
scale-degree probabilities for the Markov model). For
intervals, the issue is more difficult. In theory, an interval
of any size might occur. This is not a problem for the
Gaussian model; the probability for any interval can eas-
ily be calculated from the normal distributions. The Mar-
kov model, however, needs parameters for each interval
(or combination of intervals, for first- and second-order
models). The model should at least allow all intervals up
to the largest interval present in the data. For the Essen
collection, the largest interval is 21 (an octave plus
a major sixth); this creates a total interval range of 43
(21 ascending þ 21 descending þ repetition), requiring
433¼ 79507 parameters. One could perhaps devise a sim-
pler scheme for handling very large intervals—for exam-
ple, assigning them all the same very low probability. If
we assume this approach for all intervals greater than an
octave (though this was not actually done in implement-
ing the model), this still yields 253 ¼ 15625. Thus:

Total parameters for the Gaussian model¼ 24 (scale
degrees)þ 1 (proximity profile variance)þ 1 (range
profile variance) ¼ 26

Total parameters for Markov model ¼ 24 (scale
degrees) þ 15625 (intervals) ¼ 15649

By this (very conservative) estimate of the number of
parameters in the Markov model, it requires 602 times
as many parameters as the Gaussian model. This applies
to the folksong, classical, and chorale corpora; for the
rock corpus, we subtract 12 from each total since only
one scale-degree profile is used.

Several proposals have been made for how the criteria
of complexity and goodness-of-fit might be balanced
against one another. One is the Akaike Information
Criterion (AIC) (Akaike, 1974). According to this
metric, a model is evaluated by the following formula:

AIC ¼ 2k� ð2� ln P data j modelð ÞÞ ð6Þ

where k is the number of parameters in the model; ln
P(data | model) can be calculated as the cross-entropy
multiplied by the number of notes in the test set (multipled
by a constant to convert log base 2 to natural logarithms). A
lower AIC means a better model. The ratio between the
Gaussian model’s AIC and the Markov model’s AIC for
each corpus test is shown in the rightmost column of
Table 2; this measure favors the Gaussian model on all four
corpora. (The weight of goodness-of-fit in relation to sim-
plicity increases as the size of the test set increases, meaning
that the advantage of the Gaussian model is greater for
smaller corpora.) However, the AIC is not universally
accepted; alternative ways of balancing goodness-of-fit and
simplicity have also been proposed (Pitt, Myung, & Zhang,
2002; Rissanen, 1989; Schwarz, 1978).

Several features of Table 2 deserve further discussion.
Regarding the Markov model, the fact that a zeroth-
order scale-degree model is optimal for all four corpora
is worthy of comment. Conventional wisdom holds that
certain scale-degree patterns are particularly common
in tonal music, such as 7̂-1̂ and 4̂-3̂ (Aldwell & Schachter,
2003, p. 91). One might suppose that a first-order (or
higher) scale-degree model would be needed to capture
such patterns. The current study suggests, however, that
they may arise naturally from more general principles—
an intervallic preference for half-step motion, combined
with zeroth-order preferences for scale degrees 1̂ and 3̂.
Indeed, the fact that the Gaussian model fits the data
nearly as well as the Markov model suggests that even
the apparent preference for half-step motion may simply
reflect a still more general preference for small melodic
intervals.

TABLE 2. Tests of the Markov and Rule-based Models on Four Corpora.

Corpus

Num.
notes in
test set1

Markov model (MM) Gaussian model (GM)
GM/MM

cross-
entropy

GM/
MM
AIC

Optimal orders
(sc.-deg, interval)

Num.
params.2

Cross-
entropy

Optimal variances
(range, proximity)

Num.
params.

Cross-
entropy

Folksong 28105 0, 2 15649 2.56 23, 11 26 2.73 1.06 0.81
Classical 15323 0, 2 15649 2.97 50, 15 26 3.36 1.13 0.76
Chorale 702 0, 2 15649 2.26 19, 7 26 2.62 1.16 0.08
Rock 4821 0, 2 15637 2.78 34, 11 14 2.98 1.07 0.40

Note: 1Each test set is 10% of the entire corpus. 2Very conservative estimates, assuming no parameters for intervals larger than an octave.
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Table 2 also reflects some interesting differences
between the corpora. Regarding the Gaussian model,
the optimal range and proximity variances are some-
what greater for the classical corpus than for the other
three. No doubt this is partly because the classical cor-
pus contains instrumental themes while the other cor-
pora feature vocal melodies; instrumental melodies
often feature larger intervals and ranges than vocal ones.
The classical corpus also reflects higher cross-entropy
(by both models) than the other three. This may be due,
again, to the larger range of intervals used in the clas-
sical corpus, and more generally to its stylistic diversity.
The Barlow and Morgenstern dictionary includes
themes from the 17th through the 20th century, and
thus spans a range of melodic idioms; for example, it
contains many highly chromatic themes (even a few
truly atonal ones) as well as many that are purely dia-
tonic. The stylistic heterogeneity of the classical corpus
may also explain why the difference in cross-entropy
beween the two models is relatively large in this case.
The second-order interval component of the Markov
model gives it a (very limited) ability to adjust to sty-
listic context; it might recognize, for example, that a con-
text of two large intervals suggests a rather ‘‘leapy’’
idiom, which is likely to be followed by another large
interval. This reasoning does not, however, explain the
even larger difference between the models on the chorale
corpus, which one might suppose was the most stylisti-
cally homogenous of the four. A possible explanation
in this case might be that the chorale corpus features
certain melodic idioms that tend to occur often; such
patterns could be learned by the second-order interval
component of the Markov model, thus giving it an
advantage over the Gaussian model. This hypothesis is
supported by the fact that the Markov model assigns the
chorale corpus lower cross-entropy than any of the other
three. Informal inspection of the chorale corpus offered
little support for this view, however; while it contains
many occurrences of intervallic and scale-degree patterns
typical of common-practice Western music, such as
3̂-2̂-1̂, such patterns appear to be almost equally common
in the folksong and classical corpora. Thus, the Markov
model’s especially low cross-entropy on the chorale cor-
pus remains something of a mystery.

TESTING THE MODELS ON EXPECTATION DATA

A model that assigns a probability to a sequence of notes
can also be used to model human expectation judg-
ments. A large body of work has been devoted to the
modeling of musical expectations, mostly focusing on
the dimension of pitch (for a survey, see Temperley,
2012). One particularly widely used data set was created
by Cuddy and Lunney (1995). In this study, participants
heard two-note contexts followed by a continuation
note that could be anywhere within an octave of the
second context note (thus 25 different continuation
notes were possible for each context); eight different
contexts were used, as shown in Figure 2, creating 200
stimuli in all. Participants rated the expectedness of the
continuation note given the two-note context on a scale
of 1 to 7. Several attempts have been made to model this
data. Cuddy and Lunney (1995) and Schellenberg (1996,
1997) used models inspired by Narmour’s (1990) theory
of melody, in which the predicted expectedness of a con-
tinuation was a function of several principles of melodic
shape; scale degree was also included as a factor. Mul-
tiple regression was used to find the optimal fit of the
factors to the data, yielding a correlation of r ¼ .80 in
Cuddy and Lunney’s study and r¼ .85 in Schellenberg’s.
Pearce and Wiggins (2006) modeled the data using
a multiple viewpoint approach. They considered various
factors relating to interval and melodic shape, but not
scale degree; they also considered rhythm, unlike the
other models discussed here. (Rhythm is informative
since the second context note was shorter than the other
two.) The best version of the model combined three
features: interval to the first note of the pattern, diatonic
interval, and a combination of interval and duration.
The model’s probabilities were transformed into rank-
ings and yielded a correlation of .85. Finally, Temperley
(2008) applied a probabilistic model very similar to that
proposed above, though with some additional features
added (as will be explained below), achieving a correla-
tion of .88.

My aim here is not to improve on these models in
terms of their fit to the data, but rather, to address the
same question asked in the previous section: Given
a model that considers only interval and scale degree, is
a Markovian approach to interval better than a Gaussian

FIGURE 2. The two-note contexts used in Cuddy and Lunney’s (1995) experiment.
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one? In what follows, I use the two models presented
earlier to predict Cuddy and Lunney’s (1995) data. Each
model yields a log probability for each note in a melody
given the previous context; these values can be treated as
the models’ expectation judgments and compared with
the participants’ judgments in Cuddy and Lunney’s
experiment.

One problem arising here concerns key. In the earlier
tests on corpora, the key of each melody was known and
was used to transpose all melodies to the same key, so
the scale degree of each note could be used in testing.
With expectation data, however, the key may be
unknown or ambiguous, especially with short melodic
segments such as Cuddy and Lunney’s (1995) three-
note patterns. The modeling approach used here allows
an effective solution to this problem. Each note proba-
bility emitted by a model indicates P(En | context, key),
where En is the nth note of the melody. The probability
for an entire melody given the key then multiplies this
quantity over all notes:

P melody j keyð Þ ¼
Y

n
P En j context; keyð Þ ð7Þ

Multiplying this by the prior probability of a key yields
the joint probability of a melody and a key:

P melody; keyð Þ ¼ P keyð Þ
Y

n
P En j context; keyð Þ

ð8Þ

(Choosing the key that maximizes this quantity yields
the most probable key given the context—in effect, pro-
viding a key-finding algorithm [Temperley, 2007]; but
this is not our concern here.) Summing this over all keys
yields the overall probability of the melody:

P melodyð Þ ¼
X

key

ðP keyð Þ
Y

n
P En j context; keyð ÞÞ

ð9Þ

This can be used to calculate the probability of any
sequence of pitches. It is also true that

P En j contextð Þ ¼ PðE0:::EnÞ=PðE0:::En�1Þ ð10Þ

Each of the two terms on the right (the context plus the
current note, and the context without the current note)
can be treated as a melody and its probability calculated
using equation (9) shown above; the ratio between them
is then the probability of the note given the context. In
effect, this considers all possible keys in predicting the
next note, giving more weight to keys that are more
probable given the context.

A further issue concerns the kind of training data to
use. Ideally one would want to use data that reflects the
musical experience of the subjects, but this is difficult to
know. (Cuddy and Lunney’s [1995] experiment used
one group of musician subjects and one group of non-
musicians; the data used here averages the mean ratings
from the two groups.) In previous work the Essen folk-
song corpus was found to yield good results, so that was
initially used here.

The models were tested by calculating the correlation
between each model’s judgments and the expectedness
ratings. Log probabilities rather than raw probabilities
were used, since that yielded better results on earlier
tests (Temperley, 2007). Certain aspects of the models
were optimized on the data, as they were on the corpus
tests. For the Markov model, different orders of the
interval and scale-degree components were tried. The
best combination was found to be a zeroth-order scale-
degree model (as was found also for the corpus tests
presented earlier) and a first-order interval model; this
yielded a correlation of .79. (A second-order interval
model was not possible, since each continuation tone
was only preceded by two notes.) For the Gaussian
model, the variances of the proximity and range profiles
were optimized; this yielded a correlation of .81. The
models were also tried with different corpora for train-
ing; out of the four corpora considered in the last sec-
tion, the one yielding best performance for the Markov
model was the classical corpus, with a correlation of .82.
For the Gaussian model, no corpus yielded better per-
formance than the folksong corpus.

In earlier work (Temperley, 2007, 2008) I presented a
melodic expectation model very similar to the Gaussian
model used here, but with some additional features
added. The model calculates the mean of the range
distribution in a complex way that takes into account
both the mean of the pitches heard so far and a general
preference for a certain absolute range. It also assigns
major keys a somewhat higher prior probability than
minor keys (since major tends to be more common),
and it modifies the scale-degree profile for the last note
of the melody, boosting the value for the tonic scale
degree, on the grounds that listeners tend to interpret
the last note of any melody as the tonic. (Cuddy &
Lunney’s [1995] and Schellenberg [1997]’s models also
reflect this preference.) As noted earlier, adding these
features to the Gaussian model improved its correlation
to .88. It seemed possible that adding these features to
the Markov model would yield a similar improvement.
Adding a preference for major keys and a ‘‘last-note-as-
tonic’’ preference improved performance only slightly,
however, from .82 to .83. There seemed to be no simple
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way of incorporating the absolute range preference, so
this was not attempted.

Cuddy and Lunney’s (1995) study used very simple,
one might say artificial, stimuli; one might wonder how
the models would perform in more musically realistic
situations. Suitable data sets are difficult to find. One
widely used data set is from a study by Schellenberg
(1996), in which subjects heard fragments of English
folk songs and had to rate the expectedness of possible
continuations. The problem with this data set is that
only diatonic test tones were used as continuation tones;
since the most salient tonal distinction between pitches
is between diatonic and chromatic tones, the data set is
of little interest for models that seek to capture effects of
tonality.

Another (small) body of data is provided in a study by
Manzara, Witten, and James (1992). This study used an
ingenious experimental paradigm in which subjects
(both musicians and nonmusicians) heard a portion
of a Bach chorale melody and then bet pretend money
on possible continuations; the amount bet on the actual
note was taken as an indicator of its subjective proba-
bility. The procedure was used on two Bach chorale
melodies, BWV 159 and BWV 379 (see Figure 3); the
authors reported the log probability of each note, aver-
aged across subjects. This data can be used in a similar
manner to the Cuddy/Lunney data. In this case the
models make a judgment about each note, based on the
previous context. The first three notes of each melody
were skipped, thus allowing the possibility of a second-
order interval model; this left a total of 80 data points.
While the key is indicated in the score of each chorale, it
was not assumed that participants would have this

information; key was treated as indeterminate, as with
the Cuddy and Lunney (1995) data. For training data, it
seemed most natural to use the chorale corpus used
earlier. (BWV 379 was originally part of this corpus, but
was removed from it for this test.) It is not obvious that
participants in the study would have applied probabil-
ities drawn from the chorale repertoire, or that they
would even be familiar with this repertoire; but this
seemed at least a reasonable starting point.

For the Gaussian model, optimizing the range and
proximity variances yielded a correlation of .42. For the
Markov model, the optimal configuration proved to be
a first-order interval model combined with a zeroth-
order scale-degree model, yielding a correlation of .52.
The other three corpora used in earlier tests were also
tried as training sets. None of them yielded any
improvement for the Gaussian model; the classical cor-
pus gave a very small improvement (.53) for the Markov
model.

Overall, the tests presented here present a mixed pic-
ture as to the relative success of the Markov and Gauss-
ian models in modeling expectation data. The Markov
model’s fit to the Cuddy and Lunney (1995) data is
about the same as that of the Gaussian model; on the
chorale data, the Markov model fares substantially
better. Simplicity would appear to be a point in favor
of the Gaussian model, though since the best Markov
model employs only first-order interval probabilities,
the difference in complexity is considerably less than
on the earlier corpus tests. As noted earlier, other models
employing a Gaussian approach to interval (Temperley,
2007) and a Markovian approach (Pearce & Wiggins,
2006) have been proposed that exceed the performance

FIGURE 3. The two Bach chorale melodies used in Manzara et al.’s (1992) experiment: (A) BWV 159, (B) BWV 379.
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of the simple models presented here, but the many
differences between them make comparison difficult.
(Witten, Manzara, & Conklin [1994] and Pearce &
Wiggins [2006] also tested their multiple-viewpoint mod-
els on the chorale expectation data; Pearce & Wiggins
report a correlation of .80.) The aim of the current exper-
iment was to provide a more controlled comparison of
the two approaches.

MODELING THE DISTRIBUTION OF MELODIC INTERVALS

As a final test, we return to an issue discussed in the first
section of this paper. I posed the question: which of the
two models presented here can more successfully pre-
dict the distribution of intervals in the Essen folksong
corpus, shown in Figure 1 (and again in Figure 4)? We
can address this question by using the two models in
a generative fashion. Given a starting point, each model
creates a probability distribution for the next note; this
distribution can be sampled, choosing a note at random.
Repeating this process and adding each note to the con-
text for the next note, we can create a long note sequence
and examine the resulting interval distribution. Using the
Gaussian model—considering scale-degree probabilities
(extracted from the corpus), proximity to the preceding
note, and proximity to the mean position of the preced-
ing pitches—a melody of 1 million notes was created; the
resulting interval distribution is shown in Figure 4.
Kullbach-Leibler (K-L) divergence, a standard measure
of the similarity between two probability distributions,
yields a value of 0.08 between this and the observed

interval distribution of the corpus (a lower value indi-
cates a better fit between the distributions). Qualitatively,
it can be seen that the model fits the data well, capturing
the large-scale ‘‘bell’’ shape of the distribution as well as
many of the local peaks and valleys. The range profile has
little effect here; almost the same K-L divergence, 0.07,
was obtained by a model that considered only proximity
and scale degree.

For the Markov model, we can ask, which version—
that is, which orders of interval and scale degree—yields
the best fit with the interval distribution of the corpus?
The answer is simple. Since the data in Figure 1 repre-
sents the zeroth-order frequency of intervals in the cor-
pus, a melody produced by a zeroth-order interval
model trained on this same distribution—without con-
sidering scale degree—will reproduce it perfectly (or
rather, will converge on this distribution as the length
of the melody approaches infinity). This was verified
empirically: The K-L divergence between the observed
interval distribution and that of a 1-million-note mel-
ody generated from a zeroth-order interval model was
less than 0.0001; the same was true of first-order and
second-order interval models. Since the distribution
produced by a purely interval-based Markov model is
already perfect, factoring in scale degree can only
worsen it. And indeed, multiplying the interval proba-
bilities by scale-degree probabilities, as was done for the
Gaussian model on the previous test, increases the K-L
divergence, yielding 0.10 for a zeroth-order interval
model, 0.07 for a first-order interval model, and 0.05
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for a second-order interval model. The distribution for
the second-order interval, zeroth-order scale-degree
model—the best version of the Markov model in the
corpus tests presented earlier—is shown in Figure 4.

To understand why the Markov model behaves as it
does, consider again the case of whole steps versus half
steps. A Markovian interval model, with no influence of
scale degree, will capture the preference for whole steps
over half steps by exactly the right amount. But as noted
earlier, this preference may also be seen as arising from
scale-degree probabilities: moving from one diatonic
scale degree to another is more likely to involve whole
step than half-step motion. Thus, multiplying scale-
degree probabilities by interval probabilities makes the
difference between whole steps and half steps greater
than it should be; this can be seen from Figure 4, where
the Markov model underestimates the probability of
half steps. In other respects, the Markov model is able
to capture features of the interval distribution that the
Gaussian model misses, such as the preference for
descending versus ascending steps (seen in Figure 4);
and overall, the K-L divergence for the second-order
Markov model (with scale-degree probabilities) is lower
than that of the Gaussian model. We should remember,
also, that incorporating scale-degree probabilities
improves the Markov model with regard to the model-
ing of sequential melodic data (as shown in Table 1).
Still, the issue raised here suggests that multiplying
interval and scale-degree probabilities may not be the
ideal solution.

Discussion

The current study compared two probabilistic methods
of modeling melodic interval. Under the Markov
method, the probability of an interval is defined by its
count in a corpus, conditioned on previous intervals.
Under the Gaussian method, it is a simple function of
the size of the interval to the previous note and the
distance to the mean pitch of the melody. In both mod-
els, this interval probability was then multiplied with the
probability of the scale degree of the note. The models
were tested on their ability to predict three kinds of data:
sequential data from melodic corpora, experimental
data from melodic expectation studies, and the distri-
bution of melodic intervals in a corpus. Regarding the
sequential corpus data, the Markov model yielded
a somewhat better fit to the data than the Gaussian
model on all four corpora examined. The difference in
cross-entropy between the models ranged from 6% to
16%, depending on the corpus. The Markov model is,
however, much more complex than the Gaussian model,

requiring at least (very conservatively) several hundred
times as many parameters. On expectation data, the
Markov model’s fit to the data was about the same as
the Gaussian model on one corpus and considerably
better on another; here again, simplicity would favor
the Gaussian model. On the interval distribution, both
models fit the data quite closely, the Markov model
slightly beter than the Gaussian model; in this case, the
best-performing version of the Markov model is one
that does not consider scale degree at all.

As noted before, there is no widely accepted method
for balancing simplicity against goodness-of-fit. The
question is, again, which model is most plausible from
a cognitive point of view. In terms of modeling the
cognitive processes of composition: Does the better fit
of the Markov model justify the view that composers
maintain individual preferences for different intervals?
Or, in view of the much greater simplicity of a Gaussian
model, is it more that plausible that composers simply
favor pitches that are close to the previous pitch and to
the center of the range? Similar questions could be
posed regarding the modeling of expectation. There
appears to be no straightforward way of answering such
questions. While one method for balancing simplicity
and goodness-of-fit (the AIC) favors the Gaussian
model, other measures might yield different results.
Thus, I draw no conclusion here as to which model
‘‘wins’’ the current competition. I do maintain, however,
that simplicity should be given some weight, so that
a given difference in goodness-of-fit could potentially
be outweighed if the difference in model complexity was
great enough.

The multiple-viewpoint approach offers another way
of combining scale degree and interval probabilistically,
namely, through a linked viewpoint (Conklin & Witten,
1995). A linked viewpoint counts the occurrences of two
features in combination, and defines probabilities
accordingly. In the case of scale degree and interval, for
example, the model would count the occurrences of
scale degree 1 combined with a melodic interval of -2,
and so on. This can also be implemented in a Markovian
fashion, by counting the occurrences of longer
sequences of feature combinations. The problem here
is the explosion of parameters: If we limit the interval
range to an octave (25 possible intervals) and allow only
a single scale-degree profile, even a zeroth-order model
of this kind would require 12 � 25 ¼ 300 parameters;
a first-order model would require 90,000; a second-
order model would require 27 million. It seems unlikely
that such a model would yield an improvement in cross-
entropy that would justify this level of complexity,
though the possibility might be worth exploring. The
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same point might be made about higher-order (e.g.,
third-order) Markov models, which might improve
goodness-of-fit but only at the expense of a huge
increase in complexity. Another possibility would be
to adopt a ‘‘variable-order’’ model, in which the order
used by the model can vary depending on the context
(Pearce & Wiggins, 2004).

It might also be possible to modify the Gaussian
model to improve its performance. One could maintain
the factors of pitch proximity and range, but build in
further principles to better fit the data, such as the fact
that steps are more likely to be descending and skips are
more likely to be ascending (Huron, 2006). Also of
interest here is the concept of inertia, also known as
process (Larson, 2004; Narmour, 1990): a melodic step
(ascending or descending major or minor second) is
highly likely to be followed by another step in the same
direction. In the Essen corpus, for example, 43.1% of
steps are followed by a same-direction step, but only
18.3% by a different-direction step. The Gaussian
model, as currently defined, does not capture this phe-
nomenon; the Markov model does capture it, assuming
a first-order (or higher) model of interval. One could
incorporate inertia into the Gaussian model with a spe-
cial rule that boosted the probability of an ascending
step following a previous ascending step (and similarly
for descending steps). This might well improve the per-
formance of the Gaussian model, while avoiding the
large number of parameters required by a fully Markov-
ian approach.

Other factors influencing the structure of melodies
might well be incorporated into the models presented
here. One important factor is the repetition of patterns,
such motives and themes. The multiple-viewpoint
approach (Conklin & Witten, 1995) offers a solution
to this problem by combining a ‘‘long-term’’ model,
embodying general knowledge about the style (such as
the kind of knowledge discussed in this paper), with
a ‘‘short-term’’ model (also Markovian) trained only
on previous notes within the current melody. Another
important factor is harmony. It is generally assumed
that an unaccompanied melody has a harmonic struc-
ture, which can be inferred from the notes and may then
constrain the prediction of further notes. For example, if
a melody begins with scale degrees 1̂-3̂, this seems to
imply tonic harmony, perhaps making it likely that the
next note will also be part of the same harmony, such as
5̂ (though not every note is part of the harmony; non-
harmonic tones, such as passing tones, also occur).
Finally, there is the whole issue of rhythm and meter.
This is an important dimension of melody that might
itself be predicted by a probabilistic model (Temperley,

2010). It might also be used to inform predictions about
pitch—for example, if some scale degrees tend to be
longer in duration or to fall on stronger metric positions
than others (an approach that has been used in some
multiple-viewpoint studies, e.g., Conklin & Witten,
1995).

A premise of this study is that models of the kind
presented here could conceivably represent part of the
cognitive process of composing (or forming expecta-
tions for) tonal melodies. This assumption deserves
some further clarification. I do not wish to imply that
the creation of melodies is literally probabilistic or sto-
chastic—that is, involving random choices. Rather, the
constraints on interval and scale degree presumably
interact with a variety of other constraints and prefer-
ences in some way to produce the final product. It is the
nature of these constraints—in particular, intervallic
constraints—that is at issue here: whether they take the
form of fine-grained preferences for specific intervals,
or more general preferences for maximizing proximity
to the previous pitch and the center of the range. It is
also possible, of course, that both kinds of preferences
play a cognitive role.

The two models presented here might be seen to rep-
resent two approaches to the modeling of music cogni-
tion. One approach is statistical—involving the
gathering of large number of statistical parameters from
data. The other is rule-based—building a model based
on a few simple principles. The term ‘‘rule-based’’ is
sometimes used to refer to non-probabilistic models,
but it seems logical to allow that a probabilistic model
can be rule-based—though the rules involved tend to be
gradient rather than categorical in nature. The distinc-
tion is not always clear-cut, however. The Gaussian
model presented here is rule-based in its handling of
interval, but statistical in its handling of scale degree;
one might say that it represents a combination of rule-
based and statistical approaches. Still, it is more toward
the ‘‘rule-based’’ end of the spectrum than the Markov
model, which is purely statistical in character.

One might ask whether the statistical approach or
the rule-based approach to melodic interval is more
cognitively plausible a priori, given what we know
about cognition in general. This question admits of
no simple answer. Debates over the relative merits of
rule-based versus statistical approaches have arisen
repeatedly in cognitive science, most famously perhaps
in linguistics (Marcus, Vijayan, Bandi Rao, & Vishton,
1999; Pinker & Prince, 1988; Saffran, Aslin, & New-
port, 1996); the issue is far from resolved. Both the
Markov and Gaussian approaches to melodic interval
have connections with proposals in other domains of
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cognitive science. Markovian methods are widely
used in psycholinguistics; for example, McDonald
and Shillcock (2003) propose a bigram model to pre-
dict word reading times. The use of Gaussian func-
tions is also well-established in cognitive modeling, in
areas such as vision (Marr, 1982) and categorization
(Shi, Griffiths, Feldman, & Sanborn, 2010). Clearly,
humans have the capacity to learn general rules; they
also have the capacity to absorb large amounts of sta-
tistical information. The current study certainly does
not resolve this debate, though it perhaps adds one
more piece of evidence to a very complicated picture.
With regard to the modeling of musical interval, at
least, the current study suggests that both statistical and

rule-based approaches have points in their favor and
deserve serious consideration.

Author Note
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