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Fall 1997, Vol. 15, No. 1, 31-68 university of California 

An Algorithm for Harmonic Analysis 

DAVID TEMPERLEY 
Columbia University 

An algorithm is proposed for performing harmonic analysis of tonal music. 
The algorithm begins with a representation of a piece as pitches and 
durations; it generates a representation in which the piece is divided into 
segments labeled with roots. This is a project of psychological interest, 
because much evidence exists that harmonic analysis is performed by 
trained and untrained listeners during listening; however, the perspective 
of the current project is computational rather than psychological, simply 
examining what has to be done computationally to produce "correct" 
analyses for pieces. One of the major innovations of the project is that 
pitches and chords are both represented on a spatial representation known 
as the "line of fifths"; this is similar to the circle of fifths except that 
distinctions are made between different spellings of the same pitch class. 
The algorithm uses preference rules to evaluate different possible inter- 
pretations, selecting the interpretation that most satisfies the preference 
rules. The algorithm has been computationally implemented; examples 
of the program's output are given and discussed. 

recent years, a great deal of work in music perception has focused on 
harmony. A number of researchers have investigated listeners' percep- 

tions of stability and similarity relations between chords and keys, and 
spatial representations have been proposed to model these intuitions 
(Krumhansl, 1990; Lerdahl, 1988; Shepard, 1982). Others have explored 
the interaction of harmonic structure with other aspects of musical cogni- 
tion, such as memory, expectation, and segmentation.1 Still others have 
studied the role of psychoacoustics in harmony, the possibility of imple- 
menting harmonic perception using connectionist networks, the develop- 
ment of harmonic perception in children, and its localization in the brain.2 
Despite the important contributions of this work, however, one aspect of 

1 . This work is discussed further later. 
2. On psychoacoustics, see Terhardt (1974) and Parncutt (1989). For a connectionist 

approach, see Bharucha (1987b). On development in children, see Cuddy and Badertscher 
(1987) and Kastner and Crowder (1990). For a review of work on brain localization and 
other neurophysiological work, see Zatorre (1984). 
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32 David Temperley 

this area has received little attention. It is generally assumed that harmony 
is psychologically real: at one level, a listener's processing of a piece in- 
volves dividing it into segments and labeling them as chords. But how is 
this done? What is the process whereby a harmonic representation is de- 
rived from a pitch representation? In this paper, I introduce a computa- 
tional algorithm that I have developed for performing harmonic analysis, 
which may shed light on the psychological processes involved.3 

Several assumptions of this paper should be clarified at the outset. The 
first concerns the psychological status of harmonic structure. It is my as- 
sumption that harmonic analysis is psychologically real for a broad popu- 
lation of listeners, both trained and untrained, who have exposure to tonal 
music. This claim is rarely made explicitly, and some might find it doubt- 
ful, but there is in fact a wealth of evidence for it. In the first place, there is 
ample experimental evidence - such as the studies just cited - that harmonic 
analysis is part of the listening process even for listeners without formal 
training (although of course it is often performed unconsciously). Con- 
sider, for example, Krumhansl's experiments showing that chords are per- 
ceived with varying degrees of relatedness or stability depending on the 
tonal context (Krumhansl, 1990, pp. 188-212); clearly, such judgments 
depend minimally on the chords actually being identified in some way. 
Other experiments establish this in a more indirect way by showing that 
harmony influences other aspects of perceived musical structure. For ex- 
ample, harmonic structure has been shown to influence segmentation, in 
that melodic gestures that imply V-I harmonic motion are heard as being 
segment endings (Palmer & Krumhansl, 1987; Tan, Aiello, & Bever, 1985). 
It also plays a role in expectation, in that chords that form common pro- 
gressions with previous chords are expected (Schmuckler, 1989), and 
memory, in that melodies are more easily remembered when they can be 
coded in terms of alphabets built on tonal chords (Deutsch, 1982). Here 
again, the fact that the sequence of harmonies in a passage influences lis- 
teners' responses to it seems to indicate that the harmonies are being iden- 
tified. Anecdotal evidence exists, also, for the psychological reality of har- 
mony. Anyone who has taught music to untrained listeners knows that 
such listeners can often respond to cues in the music that depend on har- 
monic structure: for example, distinguishing major from minor and recog- 
nizing cadences (admittedly, not all students can perform these tasks all the 
time, but they are tasks at which many listeners have some competence). 
We should note, also, that the psychological reality of harmonic analysis is 

3. Credit is due to a number of people for their help and advice on this project. I would 
especially like to thank Jonathan Kramer, Joseph DuBiel, and in particular, my dissertation 
advisor, Fred Lerdahl. I am also greatly indebted to Daniel Sleator, who conceived and 
wrote the computer implementation. For a more detailed description of the algorithm, and 
further discussion of many of the issues presented here, see Temperley (1996). 
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An Algorithm for Harmonic Analysis 33 

taken for granted by theories of higher-level musical perception and cogni- 
tion that assume harmonic structure as part of the input, such as Lerdahl 
and Jackendoff 's (1983) theory of hierarchical structures, Narmour's (1990, 
1992) theory of melody,4 and Gjerdingen's (1987) studies of musical sche- 
mata. Of course, to say that an untrained listener unconsciously performs 
something like harmonic analysis does not mean that his unconscious analy- 
sis of a piece is necessarily identical to that of a trained expert (and there is 
undoubtedly some disagreement even among experts). Still, on balance, 
the experimental results indicate that the analyses formed by untrained 
listeners are roughly similar to the "correct" analyses that experts would 
produce. In short, it seems reasonable for us (as trained experts) to take 
our harmonic analyses of pieces as indicative of the analyses that would be 
produced by listeners in general. 

It is important to stress that no claim is being made that harmonic per- 
ception is innate; rather, the evidence suggests that it is largely learned.5 
However, it appears to be learned mainly through exposure to tonal music, 
rather than through explicit formal training. The fact that people must 
practice to learn to do harmonic analysis explicitly is no argument against 
the claim that they are doing it unconsciously all along (an analogy could 
be drawn here with syntactic or phonological analysis in language). In view 
of the pervasive presence of tonal harmony in Western music - not only 
classical music, but also hymns, carols, folk songs, show tunes, music in 
film, television and advertising, and so on - it should not surprise us if, as 
experiments seem to suggest, most listeners in Western society have ac- 
quired a substantial degree of familiarity with it. 

My aim, then, has been to produce an algorithm - a rule-governed, de- 
terministic procedure - that accurately models the process of harmonic 
analysis: that is, one that produces the correct harmonic analysis for a given 
passage of music. One might object, quite rightly, that merely finding an 
algorithm that correctly predicts the judgments of humans in a particular 
domain does not prove that humans perform the process in the same way. 
But it is now widely accepted in cognitive science - the work of David Marr 
(1982) in vision being perhaps the most notable example - that a useful 
way of gaining insight into psychological processes is to approach them 
from a purely computational point of view, asking, simply, what has to be 
done computationally to achieve the desired result.6 The current project 

4. Although Narmour's theory is primarily a theory of melody, harmonic factors play an 
important role; see, for example, Narmour (1990, pp. 212-217). 

5. For a discussion of the evidence on this point, see Kastner and Crowder (1990, pp. 
191-192). 

6. See Marr (1982, pp. 8-38), for a discussion of his approach, especially pp. 27-29. For 
more general discussions of the artificial-intelligence approach to psychological problems, 
see Pylyshyn (1989) and Dennett (1978, pp. 109-126). 
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34 David Temperley 

applies this same philosophy to music perception; although finding a com- 
putational model of a human process certainly does not prove that humans 
do it that way, the model can at least serve as a serious hypothesis for how 
the process might be performed, which can then be further tested in other 
ways, for example, through psychological experiment. 

Earlier Attempts to Model Harmonic Analysis 

For many musicians and certainly most theorists, performing harmonic 
analysis is a trivial task, requiring little thought or effort. This might lead 
one to suppose that the principles behind it are simple and straightfor- 
ward. However, as work in other areas of psychology (e.g., speech percep- 
tion and vision) has shown, tasks that are performed effortlessly by hu- 
mans often prove to be highly subtle and complex. A review of some of the 
other studies that have addressed this issue will reveal some of the prob- 
lems that arise. 

The problem of harmonic analysis, as I conceive of it here, is essentially 
one of dividing a piece into segments and labeling each one with a root. In 
this sense, it is similar to traditional harmonic analysis, or "Roman nu- 
meral analysis," as it is taught in basic music theory courses. There is an 
essential difference here, however. In Roman numeral analysis, the seg- 
ments of a piece are labeled not with roots, but rather with symbols indi- 
cating the relationship of each root to the current key: a chord marked "I" 
is the tonic chord of the current key, and so on. In order to form a Roman 
numeral analysis, then, one needs not only root information but key infor- 
mation. (Even once the root of a chord and the current key are known, this 
is not quite the same as a Roman numeral analysis, because each chord 
must be labeled relative to the key. However, this information is essentially 
determined by the root and key of each chord: if one knows that a chord is 
C major, and that the current key is C, the relative root of the chord can 
only be I.) Thus Roman numeral analysis can be broken down into two 
problems: root finding and key finding. My main concern here will be with 
the root-finding problem. In fact, however, one of the attractions of the 
harmonic algorithm I will propose is that it provides a basis for quite natu- 
ral and powerful judgments of key; I will return to this issue later. A ques- 
tion arises here regarding the interaction between the root-finding and key- 
finding processes. It is natural to assume that key judgments are affected by 
root information. It is less clear whether the root-finding process can be 
done independently of the key-finding process, or whether some feedback 
is needed from key finding to root finding. I will argue that root finding 
can be performed effectively without using key information; the approaches 
I discuss here all basically share this assumption. 
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An Algorithm for Harmonic Analysis 35 

Several attempts have been made to devise computer algorithms that 
perform harmonic analysis; particularly notable are the efforts of Winograd 
(1968) and Maxwell (1992). Both of these algorithms begin with pitch 
information and derive a complete Roman numeral analysis; both root and 
key information must therefore be determined. I will confine my attention 
here to the root- finding component of the programs. Examples of the out- 
puts of the two programs are shown in Figures 1 and 2. Both systems es- 
sentially analyze the input as a series of vertical sonorities (where any change 
in pitch constitutes a new sonority); the root of each sonority is determined 
by looking it up in a table. Simple rules are provided for guessing the iden- 
tity of two-note chords (Maxwell, 1992, p. 340; Winograd, 1968, p. 20). 
There are then heuristics for deciding whether a sonority is a real chord or 
whether it is an ornamental event, subordinate to another chord (I will 
return to these later). This approach seems to operate quite well in the 
examples given; however, in many cases, it would not. Very often the notes 
of a chord are stated in sequence rather than simultaneously, as in an 
arpeggiation; neither algorithm appears capable of handling this situation. 
In many other cases, the notes of the chord are not fully stated at all (either 
simultaneously or in sequence). For example, the pitches D-F may be part 
of a D-minor triad, but might also be Bl> major or even G7; as I shall show, 
context must be taken into account in interpreting these. (This causes prob- 
lems in Winograd's example: the first chord in m. 14 is analyzed as having 
root D, where it should clearly be part of an arpeggiated Bl> 6/4 chord.) 
Problems arise also with events that are not part of any chord, so-called 
"ornamental dissonances" such as passing tones and neighbor notes. Both 
Winograd's and Maxwell's algorithms have rules for interpreting certain 

Fig. 1. Schubert, Deutsche Tànze, op. 33, no. 7. The analysis shown is the output of 
Winograd's harmonic analysis program. From Winograd (1968, p. 40). ©Yale University. 
Used by permission. 
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36 David Temperley 

Fig. 2. Bach, French Suite no. 2 in C minor, Minuet. The analysis shown is the output of 
Maxwell's harmonic analysis program. From Maxwell (1992, p. 350). 

verticals as ornamental, but these are not sufficient. For example, Maxwell 
says that any single note should be considered ornamental to the previous 
chord (Maxwell, 1992, p. 340). Figure 3 gives a simple example where this 
will not work; the A is surely not ornamental to the previous chord here. 

In general, both algorithms tend to err on the side of labeling events as 
chordal rather than ornamental; for example, Maxwell's algorithm treats 
the fifth eighth note of measure 9 and the fourth eighth note of measure 1 1 
in Figure 2 as chords, when they would usually be regarded as ornamental. 
A final criticism is that both programs make use of key signature and "spell- 
ing" information as part of the input; but this information would not nor- 
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Fig. 3. 

mally be available to the listener. (Maxwell's rules also rely on rhythmic 
notation; for example, there is a preference to have one chord change for 
each quarter-note beat [Maxwell, 1992, pp. 337-340].) In short, although 
Winograd's and Maxwell's studies contain many interesting ideas, both 
authors fail to address several basic problems in harmonic analysis. 

Others have attempted to model harmonic perception using a neural- 
network or "connectionist" approach, notably Bharucha (1987b, 1991).7 
Bharucha proposes a three-level model with nodes representing pitches, 
chords, and keys. Pitch nodes are activated by sounding pitches; pitch nodes 
stimulate chord nodes, which in turn stimulate key nodes (Figure 4). For 
example, the C-major chord node is stimulated by the pitch nodes of the 
pitches it contains: C, E, and G. Bharucha's model nicely captures the intu- 
ition that chords are inferred from pitches and keys are in turn inferred 
from chords. The connectionist approach also offers insight into how har- 
monic knowledge might be acquired, an important issue that my own model 
does not address (Bharucha, 1987b, pp. 26-27; 1991, pp. 94-95). How- 
ever, the model also has a number of problems. It was noted earlier that the 
approach of simply analyzing each vertical sonority one by one is insuffi- 
cient. Bharucha proposes an interesting solution to this problem: a chord 
node is not merely activated while its pitch nodes are activated; rather, its 
activation level decays gradually after stimulation (Bharucha, 1987b, pp. 
17-18). This might seem to offer a way of handling some of the problems 
encountered by the algorithms discussed earlier, such as the problem of 
arpeggiations; however, this solution raises other difficulties. In listening to 
a piece, our experience is not of harmonies decaying gradually; rather, one 
harmony ends and is immediately replaced by another. A similar objection 
could be raised to another aspect of Bharucha's model: its handling of prim- 
ing or expectation. Experiments have shown that, when listeners hear a 
chord, they are primed to hear closely related chords (e.g., they respond 
more quickly to related chords than to unrelated ones in making judg- 
ments of intonation). Bharucha's model attempts to handle this by allow- 
ing the key nodes stimulated by chord nodes to feed back and activate the 
nodes of related chords (Bharucha, 1987b, pp. 18-21). The problem here 

7. Two other less ambitious attempts to model tonal harmony using neural networks are 
Scarborough, Miller, and Jones (1991) and Laden and Keefe (1991). 
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is this: what exactly does the activation of a chord node represent? One 
would assume that it represents the chord that is actually being perceived 
at a given moment. But now Bharucha is suggesting that it represents some- 
thing quite different, the amount that a chord is primed or expected. In 
fact, the idea of priming is a very important one, but the degree to which a 
chord is heard is different from the degree to which it is expected. I will 
offer an alternative approach to these problems. 

A very different approach to harmonic perception is taken by Parncutt 
(1989). The three models discussed so far all assume that harmonic percep- 
tion begins with pitch. Recovering chord and key information from music 
requires forming an accurate representation of the pitches; this then serves 
as the basis for further processing. Parncutt's work challenges this assump- 
tion. Parncutt argues that many aspects of musical cognition depend not 
on pitches as they occur in the score, but rather on "virtual pitches."8 A 
musical pitch is made up of a combination of sine tones or pure tones: a 
fundamental plus many overtones. But the overtones of a pitch may also be 
understood as overtones of different fundamentals. For example, if one 
plays C4-E4-G4 on the piano, some of the components of E4 and G4 are also 
overtones of C4; others are overtones of pitches that were not even played, 
such as C3 and C2. In this way, a set of played pitches may give rise to a set 
of "virtual pitches" that are quite different in frequency and strength. 
Parncutt uses virtual pitch theory to make predictions about a number of 
aspects of musical cognition, such as consonance levels of chords and the 
number of perceived pitches in a chord; it is also used to predict the roots 
of chords. The root of a chord, Parncutt proposes, is the virtual pitch that 
is most strongly reinforced by the pure-tone components of the chord 
(Parncutt, 1989, pp. 59, 139-142). The theory's predictions here are quite 
good for complete chords (such as major and minor triads and sevenths). 
They are less good for incomplete chords; for example, the root of the dyad 
C-Et is predicted to be Et (Parncutt, 1989, pp. 146-150), as opposed to C 
or Ak In cases in which consonance levels or roots of chords are not well 
explained by his theory, Parncutt suggests that they may have "cultural 
rather than sensory origins" (Parncutt, 1989, p. 142). 

The psychoacoustic approach to harmony yields many interesting in- 
sights. However, it is rather unsatisfactory that, in cases where the theory 
does not make the right predictions, Parncutt points to the influence of 
cultural conditioning. This would appear to make the theory unfalsifiable; 
moreover, it is certainly incomplete as a theory of root judgments, because 
some other component will be needed to handle the "cultural" part. But 
even if Parncutt's theory were completely correct as far as it went, in a 
certain sense it goes no further than the other studies explored here in ac- 

8. The idea of virtual pitches was first formulated by Terhardt (1974). 
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counting for harmonie perception. It accounts for the fact that certain pitch 
combinations are judged to have certain roots, and it offers a more prin- 
cipled (although imperfect) explanation for these judgments than other stud- 
ies we have seen. But as we have noted, root analysis involves much more 
than simply going through a piece and choosing roots for a series of iso- 
lated sonorities. One must also cope with arpeggiations, implied harmo- 
nies, ornamental dissonances, and so on. A psychoacoustic approach does 
not appear to offer any solution to these problems. This is not to say that 
psychoacoustics is irrelevant to harmony; clearly it is not (indeed, it might 
be incorporated into my own approach in a limited way, as I will discuss). 
But it seems highly problematic to try to explain harmonic perception solely 
in terms of psychoacoustic principles. 

Although these studies contain many valuable ideas, none of the studies 
offers a satisfactory solution to the problem of harmonic analysis. Some of 
these models also suffer from being highly complex. Maxwell's program 
(the chord-labeling component alone) has 36 rules; Winograd's program, 
similarly, has a vast amount of information built into it (as can be seen 
from his article). Bharucha's and Parncutt's models are more elegant; how- 
ever, they seem even less adequate than Maxwell's and Winograd's systems 
in handling the subtleties of harmonic analysis - ornamental dissonances, 
implied harmonies, and the like. I now propose a rather different approach 
to these problems. 

Spatial Representations and the "Line of Fifths'5 

Like the other studies discussed earlier (with the exception of Parncutt's), 
the algorithm I propose begins with a representation showing pitch infor- 
mation. Essentially, the input I assume is a two-dimensional representa- 
tion, with pitch on one axis and time on the other, similar to a "piano roll" 
(an example is shown in Figure 5).9 Pitch events in the input representation 
are categorized into chromatic scale steps, reflecting the well-established 
fact that pitch perception is "categorical" in nature. Pitch events are also 
labeled by pitch class (this would seem to be a simple matter, once their 
chromatic scale step is known), but no further information is provided 
about them. In particular, the input representation does not show the cor- 
rect "spelling" of each note, for example, At versus Gl (in contrast to 
Winograd's and Maxwell's programs, which were given this information); 

9. In beginning with such a representation, I do not wish to suggest for a moment that 
the process of deriving pitch information from sound input is a minor or trivial stage in 
perception; clearly it is not, and it has itself been the subject of considerable study (see 
Tanguiane [1994] for a review). However, this is not our concern here. 
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this must be determined by the algorithm, as I will discuss. Given such an 
input, the algorithm must form a harmonic representation in which the 
piece is completely divided into segments or "chord spans," each one la- 
beled with a root. Before we turn to the algorithm itself, we must consider 
one further issue: the kind of spatial representation that will be used. 

A good deal of work on pitch and harmony has involved spatial repre- 
sentations. This includes work by music theorists, from Riemann and 
Schônberg to the more recent work of Lerdahl (1988, 1992, 1996); it also 
includes work by psychologists, notably Shepard (1982) and Krumhansl 
(1990), whose models have been based largely on experimental results. 
Most of this work is not directly relevant to our purposes here, as it in- 
volves intuitions and experimental judgments about relationships between 
harmonic entities once they are formed, rather than the process of identify- 
ing them. I will argue, however, that spatial representations are of great 
importance in chord labeling. Two examples will illustrate this point. Con- 
sider the two short passages in Figure 6. The final chord of each passage, 
C-E, might either be C major or A minor. Probably it would be interpreted 
as C major in the first case, A minor in the second case; why is this? One 
possibility is that chords are mentally represented in some spatial way, and 
we prefer to label chords as being close to previous chords on the space. 
Various models might be used for this purpose, but the one I propose is an 
extremely simple one: a "line of fifths," in which roots are arranged by 
fifths, similar to the circle of fifths, but extending infinitely in either direc- 
tion (Figure 7). It can be seen that such a model might allow us to resolve 
the ambiguity in Figure 6. In a passage where the first two chords are C 
and G, a third root of C will be closer to the previous roots than a root of 
A. However, if the first two roots are A and E, a third root of A will be 
closer. Thus C will be preferred in the first case, A in the second. 

Now consider Figure 8, which shows a slightly different situation. Here, 
the root of the first measure is clearly G, followed by C; what is the most 
likely interpretation of the final chord? In the first passage, it seems to me 

Fig. 6. 

Fig. 7. The "line of fifths." 
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Fig. 8. 

that the probable interpretation is as A7; in the second, it is as E>7. Notice 
that, in this case, we cannot use chord distances to resolve the ambiguity, 
because the first two chords are the same in both cases. I propose an alter- 
native solution. Let us suppose that not only roots, but pitches as well, are 
represented on the line of fifths, so that we distinguish between, for ex- 
ample, Ci and Dk This adds a further stage to the process: before harmonic 
analysis can begin, each pitch must be mapped on to a position on the line 
of fifths. The line-of-fifths position of an event is constrained by its pitch 
class - an event of pitch class 0 can be either C or Btt, but not Ftt or G - but 
other considerations must be taken into account to decide between the 
possibilities. (I call these different spellings of the same pitch class "tonal 
pitch classes," as opposed to the conventional 12-category system of "neu- 
tral pitch classes.") The main consideration here is the same as that stated 
earlier with regard to roots: attempt to label events so that they are close 
together on the line of fifths. Returning to Figure 8, how would the Ctt/Dt in 
each passage be labeled? In the first passage, Ctt is closer to previous events 
on the line of fifths; in the second, however, Dt is closer. (Getting this result 
will depend on exactly how the "closeness" of events is calculated.) Using 
this simple rule, then, we could arrive at the correct spelling for the pitch 
events in this passage. But now, we further assume that the harmonic rep- 
resentation takes the spelling of pitches into account, so that the chord G- 
Ctt can have a root of A but not Et, but the chord G-Dt may have a root of 
Et but not A. By this process, then, we can arrive at the desired harmonic 
interpretation for each passage. 

The line-of-fifths model brings up an important, and much neglected, 
issue in music perception. Most models of pitch perception have been based 
on neutral pitch classes: for example, Shepard's (1982) various music spaces, 
Krumhansl's "key profile" (Krumhansl, 1990, pp. 21-31), and Bharucha's 
connectionist model (discussed earlier) all label pitches in terms of neutral 
pitch class, without any further subcategorization.10 However, this is not 

10. One important exception here is Longuet-Higgins (1962), who argues for the psy- 
chological importance of different pitch spellings. However, his model, which is based on 
psychoacoustics, also posits distinctions even between pitches of the same spelling (D a 
third below F is different from D a fifth above G); clearly, this is rather different from what 
I propose here. 
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the prevailing assumption in tonal music theory and notation; there, dis- 
tinctions are commonly made between (for example) the pitches At and Gt, 
the chords At major and Gl major, and so on. Which model is correct from 
a psychological point of view, the neutral-pitch-class (NPC) model or the 
tonal-pitch-class (TPC) model? It is my view that the TPC system is strongly 
preferable. One could argue, first of all, that TPC distinctions are experien- 
tially real and important in and of themselves. An Et and a Dt next to each 
other simply sound like different pitches (even on a piano); At major seems 
closer to C major than Gi major does (both in terms of chords and keys). 
However, using a TPC model is also more convenient and effective even in 
terms of making correct distinctions between neutral pitch classes. Figure 8 
offered one example; here, TPC distinctions allow us to correctly label the 
final chord as A in one case, Et in the other. There are other advantages as 
well, as I will discuss later. 

The idea, then, is to locate both pitches and roots so that they are maxi- 
mally close together on the line of fifths. How exactly is this to be accom- 
plished? One simple possibility is to spell each event (pitch or chord) so 
that it is maximally close to the previous event. Further thought shows that 
this is not sufficient, however. Consider the pitch sequence A-B-Ct-D-Gl. 
The final event should be spelled as Gl rather than At; but these two TPCs 
are equally close to the previous TPC, D (both are six steps away on the 
line of fifths). Rather, it seems that the current event should be labeled to 
maximize its closeness to all previous events, with more-recent events be- 
ing weighted more than less-recent ones. In the current model, a "center of 
gravity" is taken, reflecting the average position of all prior events on the 
line of fifths (weighted for recency); the new event is then spelled so as to 
maximize its closeness to that center of gravity.11 

A further point is needed regarding my use of the line-of-fifths model. 
Another alternative would be to use a multidimensional chord space such 
as that proposed by Krumhansl and Kessler (1982) and further developed 
by Lerdahl (1988), shown in Figure 9. This space shows the seven diatonic 
chords of a key. One axis represents the diatonic circle of fifths, the other 
the diatonic circle of thirds; the space wraps around in both dimensions. 

11. The elegance of this solution is another point in favor of the "line-of-fifths" model. 
One might also use a wraparound space such as the circle of fifths for resolving root ambi- 
guities. (There would be no point in using it for pitch labeling, because spelling differences 
are not represented.) However, it is quite unclear how such a "center of gravity" is to be 
calculated. Numbering the points in the space and taking the average will not work; the 
results will depend entirely on how the points are numbered. If C is 0 and At is 4, the center 
of gravity between them is 2, which is Bt; however, if At is 0 and C is 8, the center of gravity 
is 4, which is E. The same applies to multidimensional wraparound spaces, such as LerdahPs 
(discussed later). 
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Fig. 9. Lerdahl's "chordal space." From Lerdahl (1988, p. 326). 

However, there is a problem with this model for our purposes. The space 
shown in Figure 9 is a "within-key" space; according to Lerdahl's theory, 
there are different chord spaces for each key. Not all chords are shown in 
any one chord space; moreover, any given chord will be represented in 
various different spaces (e.g., C major is I/C, V/G, and so on). This means 
that one must know the key one is in in order to calculate the distance 
between any two chords; in effect, it assumes strong "top-down" influence 
from the key-finding level to the root-finding level. This presents a compli- 
cation, one that I believe is unnecessary for the purpose of root finding. 
However, the possibility of using other spaces for chord finding should be 
explored further (see Temperley, 1996, pp. 62-74, 143, for discussion). 

The basic scheme that is emerging is as follows. Before beginning the 
process of harmonic analysis, the algorithm chooses a TPC label for each 
pitch event; in so doing, it maps each event on to a point on the line of 
fifths. This is the TPC level of the algorithm. The algorithm then proceeds 
to the harmonic level, where it divides the piece into segments labeled with 
roots. At this stage, too, it maps roots on to the line of fifths, attempting to 
choose roots so that the roots of nearby segments are close together on the 
line. Thus the line-of-fifths model serves several purposes. It allows the 
spellings of pitches to be determined; in the case of roots, it not only selects 
spellings, but also resolves ambiguities such as those in Figures 6 and 8. 
The harmonic level involves other considerations as well, however, as I 
will explain. The basic framework of the algorithm is shown in Figure 10 
(note that metrical structure is also required as input; this will be discussed). 
I will now give a more detailed overview of the algorithm, using an ex- 
ample: the Gavotte from Bach's French Suite no. 5 in G major, shown in 
Figure 11. 
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Fig. 10. 

The Rules of the Algorithm 

At a conceptual level, the algorithm consists of a set of "preference rules." 
Preference rules, which were first used in Lerdahl and Jackendoff 's Gen- 
erative Theory of Tonal Music, are rules governing the formation of some 
kind of structure or representation, stating the criteria for preferring some 
representations over others (Lerdahl & Jackendoff, 1983, pp. 9, 39-43). 
When there are multiple preference rules, they may interact in complex 
ways, sometimes supporting each other and sometimes conflicting; the pre- 
ferred representation is the one that is most favored, on balance, by all the 
rules together. 

As discussed earlier, the algorithm's input is a "pitch-time" representa- 
tion, showing the pitches of a piece arranged in time. Such a representation 
is shown in Figure 5, for the beginning of the Bach Gavotte. The algorithm's 
first step is to map each of these pitches on to the line of fifths, thereby 
creating the "TPC representation." This can be thought of as a two-dimen- 
sional representation, with time on one axis and the line of fifths on the 
other, with each pitch represented as a line segment on the plane, as in 
Figure 12. Consider the first three chords (nine notes) of the Bach. These 
pitches could be spelled and as shown in the score: G-D-B-G-B-G-Ftt-A-D; 
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Fig. 11. Bach, French Suite no. 5, Gavotte. 

alternatively, they could be spelled G-D-B-Ftttt-G-G-GI>-A-Bk The first spell- 
ing is clearly preferable, but why? The main consideration here has already 
been stated: try to label events so that they are close together on the line of 
fifths. The first way of spelling the pitches locates them very close together 
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on the line; the second way leaves them much less "closely packed." We 
state this rule as follows: 

Pitch Variance Rule: Try to label nearby pitches so that they are close 
together on the line of fifths. 

Note that the rule applies to nearby pitches (pitches that are close to- 
gether in time). For pitches within a few seconds of each other, the pressure 
is great to locate them close together on the line; for pitches widely sepa- 
rated in time, the pressure is much less. One problem with the rule should 
be mentioned. Although it chooses correctly between the two possible spell- 
ings of the Bach chords just given, what about a third alternative: AH?-EM>- 
G-AH>-G-AW>-Gt-BUv-EI>t? This is identical to the correct spelling, except that 
all the events are shifted over 12 steps on the line. The events here are as 
closely packed as they are in the correct spelling. To resolve this problem, 
the algorithm automatically assigns the first event in the piece to a certain 
cycle of the line of fifths (the region between Ft and Dl>); once this is done, 
the spelling of subsequent events is determined by the pitch variance rule. 

As explained earlier, the f ormalization of the pitch variance rule depends 
on the idea of a "center of gravity" (COG). For each pitch event, a COG is 
calculated, reflecting the average position of all previous pitches on the line 
of fifths, with more recent pitches weighted more than less recent ones (this 
assumes that the spelling of all previous pitches has already been deter- 
mined). Pitch events are weighted for duration here, so that longer events 
affect the COG more. The algorithm then attempts to spell the new pitch in 
such a way that it is maximally close to this center of gravity. The way in 
which the TPC representation is generated has several complications, how- 
ever, which I explain later. 

Once the TPC representation is complete, the algorithm creates the "har- 
monic representation." Here, the piece is divided into segments, or "chord 
spans," labeled with roots; each root is a point on the line of fifths. Again, 
we can imagine a two-dimensional representation; this time, line segments 
represent chord spans rather than pitches (Figure 13 shows such a repre- 
sentation for the opening of the Gavotte). For each chord-span, a root 
must be selected (the segmentation of the piece into chord spans must also 
be determined; I will discuss this later). One important factor is clearly the 
pitches that each span contains. Let us consider the second chord of mea- 
sure 1: G-B-G. Simply considering the segment out of context, we know 
that its root is unlikely to be D or F; the most likely root is G, because both 
G and B are chord tones of the G major chord. E is also a possibility, but 
even considering this segment in isolation, G would seem more likely. The 
way we capture these intuitions is as follows. Every TPC has a relationship 
to every root, depending on the interval between them. The TPC G is 1 of 
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G, 5 of C, 3 of El>, l>3 of E, and V7 of A. (Other relationships might also be 
added, but we will consider only these five here.)12 Certain relationships 
are more preferred than others; we try to choose roots for each segment so 
that the relationships created are as preferred as possible. We call this the 
compatibility rule, stated as follows: 

Compatibility Rule: In choosing roots for chord spans, prefer certain 
TPC-root relationships over others. Prefer them in the following order: 1, 
5, 3, k3, l>7, ornamental. (An ornamental relationship is any relationship 
besides these five.) 

Given the chord G-B-G, this rule will prefer a root choice of G over E. A 
root of G will result in TPC-root relationships of 1, 1, and 3, whereas a 
root of E will result in k3, k3, and 5; the former choice is clearly preferred by 
the compatibility rule. Roots that involve "ornamental" relationships - 
those other than the ones specified - are still less preferred. (Note that the 
compatibility rule considers TPCs, not NPCs. The importance of this has 
already been discussed; for example, it allows the algorithm to make the 
correct root choices in Figure 8. This has other advantages as well, as I will 
explain.) 

Note that the algorithm only labels each chord span with a root. In this 
sense it differs from conventional harmonic analysis (aside from the fact, 
discussed earlier, that conventional analysis identifies roots in relative rather 
than absolute terms). Roman numeral analysis gives other information about 
chords as well, such as their mode (major or minor) and extension (triad, 
seventh, etc.). However, such information appears to be fairly easily acces- 
sible. I will return to this point. 

Now consider the second quarter of measure 2. The E is clearly orna- 
mental (how this is determined will be explained later); the chord tones of 
the segment are then Ft-A-Ft (the A is held over from the previous beat). 
The correct root here is D, but the compatibility rule alone does not en- 
force this. A root of D will yield TPC-root relationships of 3-5-3, whereas 
a Ft root will yield 1-I>3-1; the compatibility rule does not express a clear 
preference. Consider also the last quarter of measure 2; here the pitches are 
E-G-E, offering the same two interpretations as the previous case (3-5-3 vs. 
l-k3-l). But here, the root is E; in this case, then, the 143-1 choice is prefer- 
able. Clearly, another rule is needed here. The rule I propose is a very simple 
one: we prefer to give each segment the same root as previous or following 
segments. In this case, the first beat of measure 2 clearly has root D; there 
is then strong pressure to assign the second beat the same root as well. 

12. The reason why these five relationships are the most preferred ones (and why some 
are more preferred than others) is a complex issue, which I will not explore here; 
psychoacoustic factors are undoubtedly relevant (see Parncutt, 1989, discussed earlier). 
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Another way of saying this is that we prefer to make chord spans as long as 
possible (where a chord span is any continuous span of music with a single 
root). This rule - which we could tentatively call the "long-span" rule - 
also addresses another question: we have been assuming segments of a quar- 
ter note, but why not consider shorter segments such as eighth-note seg- 
ments? For example, what is to prevent the algorithm from treating the 
third eighth note of measure 5 as its own segment and assigning it root D? 
Here again, the "long-span" rule applies; spans of only one eighth note in 
length (that is, an eighth-note root segment with different roots on either 
side) will generally be avoided, although they may occasionally arise if no 
good alternative is available. 

Although it is true that long spans are usually preferred over shorter 
ones, further consideration shows that this is not really the principle in- 
volved. Consider Figure 14: The first note of measure 2 could be part of the 
previous F segment (as a 1), or it could be part of the following G segment 
(as a V7). The compatibility rule would prefer the first choice, and the long- 
span rule stated earlier expresses no clear preference; why, then, is the sec- 
ond choice preferable? The reason is that we do not simply prefer to make 
spans as long as possible; rather, we prefer to make spans start on strong 
beats of the meter. This has the desired effect of preferring longer spans 
over shorter ones (strong beats are never very close together; thus any very 
short span will either start on a weak beat itself, or will result in the follow- 
ing span starting on a weak beat). In measure 2 of the Bach, for example, 
having spans start on strong beats will mitigate against starting spans on 
the second and fourth quarter notes, as these are relatively weak beats. 
However, this has the additional effect of aligning chord-span boundaries 
with the meter, thus taking care of cases like Figure 14. We express this as 
the "strong-beat rule." 

Strong-Beat Rule: Prefer chord spans that start on strong beats of the 
meter. 

The strong-beat rule raises a complication: it means that the algorithm 
requires metrical structure as input. The kind of metrical structure I am 
assuming is that proposed by Lerdahl and Jackendoff (1983): a structure 

Fig. 14. 
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consisting of a series of levels of evenly spaced beats, with every second or 
third beat at one level being a beat at the next level up. (The way this 
structure is derived is a complex cognitive process in itself, but this is not 
our concern here; see Lerdahl & Jackendoff, 1983, pp. 68-103.) Every 
level of beats has a certain time interval associated with it, which is the 
time interval between beats at that level. According to Lerdahl and 
Jackendoff, every time point in a piece that is the beginning or ending of a 
note must coincide with a beat (Lerdahl & Jackendoff, 1983, p. 72), al- 
though there may also be beats that do not coincide with note beginnings 
or endings. Thus each such time point has a certain highest beat level, that 
is, the highest beat level at which that time point is a beat; and each such 
time point has a metric strength, which is given by the time interval of its 
highest beat level. A time point whose highest beat level has a long time 
interval is metrically strong; the longer the time interval, the stronger the 
beat. This, essentially, is how the rule above is expressed formally; there is 
a preference for starting chord spans on metrically strong beats. (Time points 
that are not beats of the metrical structure at all are simply disallowed as 
segment boundaries. This seems to conform to intuition; it also seems to be 
a logical extension of the strong-beat rule and greatly limits the possibili- 
ties that the algorithm must consider.) 

A further rule is nicely illustrated by measure 16 of the Bach Gavotte. If 
we assume for the moment that the C and A in the right hand and the Ff 
and A in the left hand are ornamental dissonances (again, this will be ex- 
plained later), this leaves us with chord tones of G and B. The compatibil- 
ity rule would prefer a root of G, but E seems a more natural choice; why? 
This brings us to the consideration discussed earlier: we prefer to choose 
roots that are close together on the line of fifths. The previous span clearly 
has root B; we therefore prefer E over G as the root for the following span. 
The same applies to the first half of measure 19; the chord tones here, C 
and E, could have a root of A or C, but because the previous span has root 
G, C is preferable (in this case, the compatibility rule reinforces this choice). 
We express this rule as follows: 

Harmonic Variance Rule: Prefer roots that are close to the roots of nearby 
segments on the line of fifths. 

The implementation of this rule is similar to that for the pitch variance 
rule. For each new span, a COG is calculated, reflecting the average posi- 
tion of all previous roots on the line of fifths, weighted for recency; for the 
new span, roots closer to this COG are preferred. 

The final rule of the algorithm concerns ornamental dissonances. We 
have been assuming that certain events are ornamental. This means that, in 
the process of applying the compatibility rule (i.e., looking at the pitches in 
a segment and their relationship to each root), certain pitches can simply 
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be neglected. But how does the algorithm know which pitches can be orna- 
mental? The key to our approach here is an idea proposed by Bharucha 
(1984). Bharucha addressed the question of why the same pitches arranged 
in different orders can have different tonal implications: B-C-Dt-E-Ftt-G 
has very different implications from G-F#-E-Dtt-C-B, the same sequence in 
reverse. (Bharucha verified this experimentally, by playing subjects each 
sequence followed by either a C-major or B-major chord. The first sequence 
was judged to go better with C major, the second with B major [Bharucha, 
1984, pp. 497-501].) He hypothesized what he called the "anchoring prin- 
ciple": a pitch may be ornamental if it is closely followed by another pitch 
a step or half-step away.13 In the first case, all the pitches may be ornamen- 
tal except C and G; in the second case, Dt and B may not be ornamental. It 
is then the nonornamental pitches that determine the tonal implications of 
the passage. The algorithm I propose applies this same principle to har- 
monic analysis. The algorithm's first step is to identify what I call "poten- 
tial ornamental dissonances" (hereafter PODs). A POD is an event that is 
closely followed by another pitch a step or half-step away in pitch height. 
What is measured here is the time interval between the onset of each note 
and the onset of the next stepwise note. For example, the first E in the 
melody in measure 2 is a good POD because it is closely followed by F#; the 
A in the melody in measure 5 is closely followed by G. However, the G in 
measure 5 is not closely followed by any pitch in a stepwise fashion; it is 
not a good POD. (The "goodness" of a POD is thus a matter of "more or 
less" rather than "all or nothing.") The algorithm then applies the compat- 
ibility rule, considering the relationship between each TPC and a given 
root. As mentioned earlier, if the relationship between an event's TPC and 
the chosen root is not one of the "chord-tone" relationships specified in the 
compatibility rule - 1, 5, 3, k3, or V7 - that event is then ornamental. Any 
pitch may be treated as ornamental, but the algorithm prefers events that 
are good PODs. We express this rule as follows: 

Ornamental Dissonance Rule: An event is an ornamental dissonance if it 
does not have a chord-tone relationship to the chosen root. Prefer orna- 
mental dissonances that are closely followed by an event a step or half-step 
away in pitch height. 

The algorithm satisfies this rule in an indirect fashion - not by labeling 
notes as ornamental once the root is chosen (this follows automatically), 
but by choosing roots so that notes that emerge as ornamental are closely 
followed in stepwise fashion. However, there is always a preference for 

13. Bharucha actually expresses this in terms of scales: an anchored pitch is one that is 
followed by another pitch a step away in the current diatonic scale (Bharucha, 1984, pp. 
494-495). Because the algorithm has no representation of scales, this option is not available 
to us here. 
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considering events as chord tones rather than ornamental dissonances, even 
if they are good PODs (this is specified in the compatibility rule). 

The "anchoring principle" does a good job of identifying a variety of 
kinds of ornamental dissonances. It handles ordinary passing tones (such 
as the eighth-note E in measure 2), and neighbor notes (the D in the left 
hand in measure 6), as well as unprepared neighbors and appoggiaturas, 
notes that are followed but not preceded by stepwise motion (such as the C 
in measure 5). It also handles "double neighbors," such as the C-A in mea- 
sure 16: a pair of ornamental tones on either side of a following chord 
tone. The C is considered a (fairly) good ornamental dissonance because it 
is followed (fairly) closely by the B; the fact that an A is in between is 
irrelevant. However, not all kinds of ornamental dissonances are captured 
by this rule. One important exception is escape tones, such as the Ft at the 
end of measure 8; another example is anticipations, ornamental tones (of- 
ten at the end of a measure) that are followed by another note of the same 
pitch, such as the G at the end of measure 24. The current version of the 
algorithm cannot handle such notes, although in principle it should be pos- 
sible to incorporate them. 

The Basic Operation of the Algorithm 

The four rules just presented comprise the entire harmonic level of the 
algorithm. We will now examine some other issues in the way the algo- 
rithm operates and the way the rules are applied. We will assume for now 
that the TPC representation has already been completed (although the situ- 
ation is in fact more complex, as I will discuss); the algorithm's task, then, 
is to generate the harmonic representation. 

Let us begin with an idealized (but unworkable) procedure for the algo- 
rithm. In this procedure, the algorithm generates all possible "well-formed" 
harmonic interpretations for an entire piece, where a well-formed interpre- 
tation is simply one in which the piece is exhaustively segmented into chord 
spans, each one labeled with a single root. Let us suppose that the piece is 
divided into very short segments, each of which must be assigned a root; a 
"chord span" then simply emerges as a series of contiguous segments with 
the same root. The algorithm gives each interpretation a numerical score 
and then chooses the one with the highest score. Each preference rule as- 
signs a score to each interpretation; the total score for the interpretation is 
the sum of the scores for the four rules. The way the scores are calculated 
will not be discussed in detail here; I will simply present the basic ideas. For 
the compatibility rule, each TPC-root relationship has a certain score (with 
more preferred relationships having higher scores); thus each pitch event in 
an interpretation yields a certain score, depending on the relationship of its 
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TPC to the current root. The compatibility score for an interpretation is 
the sum of all the compatibility scores for the notes in the piece, given the 
roots of the interpretation. (As with the pitch variance rule, notes are 
weighted for duration here, so that longer events affect the results more.) 
For the harmonic variance rule, each segment is assigned a penalty, which 
is a function of the distance of the segment's root from the current COG on 
the line of fifths; segments that are farther from the COG receive higher 
penalties. For the strong-beat rule, a penalty is applied to segments whose 
root differs from the root of the previous segment (so that only the first 
segment of each chord span receives a penalty). The penalty is determined 
by the strength of the beat on which it begins; segments beginning on stronger 
beats receive lower penalties. For both the variance rule and the strong 
beat rule, the total score for the interpretation is the sum of the scores for 
all the segments in the interpretation. For the ornamental dissonance rule, 
each event that is ornamental (i.e., that is not a chord tone relative to the 
current root) receives a penalty depending on how "good" it is as an orna- 
mental dissonance, with better ornamental dissonances receiving lower 
penalties; the total score for the interpretation sums all these scores. Thus 
every complete interpretation of a piece receives a single global score that 
indicates how good an interpretation it is, based on (a) how compatible the 
root of each span is with the pitches the span contains, (b) how close to- 
gether the roots are on the line of fifths, (c) how well the span boundaries 
are aligned with the metrical structure, and (d) the "goodness" of any or- 
namental dissonances that are entailed by the interpretation. The numeri- 
cal values for these rules are of course very important; they indicate not 
only how the penalties for a given rule vary under different conditions 
(e.g., how preferable a TPC-root relationship of 1 is relative to 5; how 
preferable a 1-sec ornamental dissonance is compared with a 2-sec one), 
but also how much weight each rule carries relative to the others. 

It should be clear that this procedure for the algorithm is neither 
computationally practical nor psychologically plausible. Each segment has 
an infinite number of possible roots (the root could be at any position on 
the line of fifths), and the possible ways of combining these segment inter- 
pretations will go up exponentially with the number of segments. One might 
ask, why must the algorithm consider complete interpretations of the piece; 
why not analyze the piece one segment at a time? The reason is that, as we 
have seen, the correct analysis of a segment depends on its context. Because 
of the variance rule, the preferred root of a segment may depend on preced- 
ing segments.14 The first half of measure 16, considered in isolation, might 

14. Context is also important because of the strong-beat rule: the penalty assigned to a 
segment depends on whether the previous segment has the same root. However, this is less 
difficult to handle computationally. 
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Fig. 15. A revised version of measure 16 of the Bach Gavotte. 

well be analyzed as having root G; it is only the context that makes us 
prefer root E (specifically the fact that E is closer to the root of the previous 
span). For that matter, the interpretation of a segment might also be af- 
fected by later segments. Suppose the first half of measure 16 was followed 
instead by an unambiguous G-major chord (as shown in Figure 15); this 
might well cause us to hear the first half of measure 16 as having root G as 
well. This is accounted for nicely by the current approach; hearing the first 
half of measure 16 as having root G would give the following segment a 
better score on both the variance rule and the strong-beat rule; overall, 
then, this interpretation might well be preferred. But this further points up 
the importance of looking at total interpretations rather than isolated-seg- 
ment interpretations. The preferred interpretation of a segment of the piece, 
therefore, is not the segment that receives the highest score in isolation, but 
rather the segment interpretation that is part of the highest scoring overall 
interpretation. For this reason, the basic approach that I have described - 

choosing the best total interpretation among all possible ones - is, in prin- 
ciple, necessary. But the procedure I have described for it, generating all 
interpretations and scoring them, is clearly not feasible. There is, then, a 
search problem of finding the optimal interpretation - the one that would 
be chosen if all possible ones were generated and scored - without actually 
generating them all. My collaborator on the implementation of the pro- 
gram, Daniel Sleator, has devised a search procedure to solve this problem, 
which I now explain. 

Our search procedure depends on the following idea. The score for an 
interpretation of a segment depends on the current COG; and this depends 
on the previous context. But all that matters to that segment is the COG of 
what precedes it. This means that if there are multiple interpretations of 
the prior context that all yield the same COG, only one of those - the high- 
est scoring one - need be retained; there is no reason why the others would 
ever be preferred. The algorithm thus processes the piece in a "left-to-right" 
manner. At each point in the piece, it maintains a number of total interpre- 
tations; for each possible COG, it retains the highest scoring interpretation 
resulting in that COG. In considering a new segment, it tries all possible 
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roots combined with each of the COGs.15 This provides a number of con- 
tinuations of the previous interpretations, each of them with a new COG 
and a new total score. But again, if several of these continuations result in 
the same new COG, only the highest-scoring one needs to be considered in 
analyzing the next segment. In this way we contain the explosion of pos- 
sible interpretations, while still making sure that the highest-scoring inter- 
pretation is found. When the end of the piece is reached, the highest-scor- 
ing interpretation at that final segment is the optimal one for the piece 
overall. 

As it has been described, the algorithm's only goal is to produce an opti- 
mal interpretation of the entire piece; it does not produce this result until 
the entire piece has been heard. This is clearly unsatisfactory as a model of 
listening; in listening, we are continuously processing the piece as we hear 
it, gradually building up our interpretation as we go along. In fact, how- 
ever, the algorithm is extremely well-suited to capturing this aspect of per- 
ception. As described earlier, the algorithm is essentially processing the piece 
in a "left-to-right" fashion, one segment at a time. It does not commit to an 
interpretation of any part of the piece until the very end. But at any mo- 
ment, there is one interpretation that is the highest-scoring one so far; this 
is the algorithm's preferred interpretation of the portion of the piece that 
has been heard. This brings us to another important feature of the algo- 
rithm. For each new segment it receives, the algorithm generates a number 
of new interpretations of the piece so far, again choosing the highest-scor- 
ing one. But suppose the highest-scoring interpretation at segment Sn in- 
volves a root at Snl other than the one originally chosen. Then, in effect, 
the algorithm is backtracking, revising its original interpretation of earlier 
events. Consider the altered version of measure 16, shown in Figure 15. 
When first heard (following the earlier context), the first half of this mea- 
sure might well be analyzed as having root E; but once the following notes 
were heard, this might cause the algorithm to retroactively change its analysis 
of the first half of the measure, because this would improve the variance 
and strong-beat scores of the following segment, thereby improving the 
overall score. In this way, the algorithm could in principle capture the well- 
known phenomenon of retroactively revising something that is heard be- 
cause of what happens afterwards. The ability of the algorithm to capture 
real-time effects such as this has not been tested, but it seems that the algo- 
rithm could offer a valuable model of real-time processing, in a way that 

15. Because COGs are real numbers, not integers, some rounding off or "bucketing" of 
COGs is necessary. Similarly, because there are infinitely many roots, there must be some 
arbitrary limit on the range of roots considered (currently the algorithm considers four 
cycles of the line of fifths, or 48 steps). 
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does not depend on any additional procedures, but, rather, arises naturally 
out of the operation of the algorithm.16 

Further Issues 

First I will make some further points about the TPC representation. I 
will then discuss the issues of ambiguity and "grammatically." Finally, I 
will consider the relevance of the current algorithm to the key-finding prob- 
lem. 

Little has been said about the operation of the TPC level. Recall that the 
main consideration here is that pitches should be spelled so that they are 
close together on the line of fifths. As with the harmonic representation, 
each pitch event in an interpretation is assigned a score, reflecting its close- 
ness to the current COG; the total score for the interpretation is then the 
sum of all the individual pitch scores; the algorithm's goal is to find the 
interpretation with the minimum score. Like the harmonic representation, 
the preferred spelling of events depends on their context: the spelling of 
each event will depend on the spelling of previous events, and it might be 
desirable to respell events in light of subsequent events. Thus the algorithm 
must again consider total interpretations, choosing the interpretation that 
is optimal overall. 

Earlier, we assumed that the TPC representation of a piece was complete 
when the harmonic representation was formed. In fact, however, the situa- 
tion is more complicated. First of all, because the harmonic representation 
is continuously being built up in a left-to-right manner, it is necessary for 
the TPC representation to be generated in this way as well. One might still 
assume that each new segment of music was processed by the TPC level 
first and then by the harmonic level. But there is a further complication. 
The TPC level is, in a sense, prior to the harmonic level, because the har- 
monic level must have TPC information in order to evaluate different inter- 
pretations. But in many cases, it is desirable to have feedback from the 
harmonic level to the TPC level. A simple example of this is seen in Figure 
16; consider the Dt in the right hand. Simply in terms of TPC variance, Djt 
is not strongly favored over Et here, if at all; they are roughly equal in 
closeness to previous TPCs. Yet Dtt is clearly the favored spelling. The cur- 
rent algorithm offers an explanation. If Et is chosen, then the TPCs present 
are Et, Ftt, and B, which do not form any tonal chord (that is, there is no 

16. The ability of global preference rule systems to capture real-time effects has also 
been explored by Jackendoff (1991), who applies the preference rules of Lerdahl and 
Jackendoff's theory to real-time processing. 
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Fig. 16. 

root for which they are all chord tones); if Dtt is chosen, however, a B-major 
chord is formed. (Remember that the compatibility rule is based on TPCs, 
not NPCs.) Thus the Dtt spelling is preferable to B because it results in a 
better harmonic representation. But to capture such phenomena, there must 
be some mechanism for allowing harmonic factors to affect the TPC repre- 
sentation. The solution, in principle, is simple: search for the combined 
TPC-harmonic representation that receives the highest score overall, con- 
sidering both the harmonic rules and the TPC variance rule. This is in fact 
the solution we adopt; however, our implementation of this is rather com- 
plex and will not be discussed here.17 

As it stands, the algorithm outputs a single TPC and harmonic represen- 
tation for the piece it is given. This is perhaps not ideal. Frequently ambi- 
guities are present in the harmonic structure of a piece, and these ambigu- 
ities can be an important part of the piece's effect. In principle, the algorithm 
should be able to capture the "ambiguousness" of a passage well. If mul- 
tiple interpretations of a passage are equally preferable, the algorithm should 
find several interpretations that are roughly equal in score. If there is clearly 
only one plausible interpretation, the algorithm should assign that inter- 
pretation a score much higher than all the others. The current system could 
also shed light on another important feature of pieces. What the algorithm 
outputs is not only a preferred interpretation but also a score for that inter- 
pretation. What this score indicates is how well the chosen interpretation 
satisfies the preference rules: to what extent it involves TPCs and roots that 
are close together on the line of fifths, reasonably few and short ornamen- 
tal dissonances, and reasonably long chord-spans. If this score is low for 
the preferred interpretation, this means that no interpretation could be found 
that satisfied these criteria to a high degree. This could be used as a kind of 
measure of the grammaticality of the piece as tonal music. If one inputs, for 
example, a piece by (posttonal) Schônberg or Webern (or even Scriabin or 
neoclassical Stravinsky), I suspect that in general no high-scoring interpre- 

17. Besides TPC variance and feedback from the harmonic level, one further consider- 
ation involved in the TPC representation is voice leading. A single pitch (such as At/Gtt) may 
be spelled in different ways depending on its voice-leading context: for example, A-At-G 
versus G-Gtt-A. The current implementation does not consider this factor, however. For 
further discussion, see Temperley (1996, pp. 186-194). 
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Fig. 17. 

tation would be found for it. However, this idea should be approached 
with caution. It is not clear what "grammaticality" means when applied to 
music; grammaticality undoubtedly has other aspects besides harmony, and 
even harmonic grammaticality surely entails much more than the basic cri- 
teria discussed earlier. Scoring well on the algorithm might be offered as a 
necessary criterion for grammaticality, but it is surely not sufficient. 

A final attractive feature of this algorithm relates to key structure. A 
considerable body of work has been done on the basis of key judgments. 
Krumhansl has proposed a model of key finding based on pitch distribu- 
tion: the pitch distribution of a piece is matched to a "key profile," or 
characteristic distribution, for each key, and the profile with the closest 
match to the piece's pitch distribution is the chosen key (Krumhansl, 1990, 
pp. 77-106). However, Butler has pointed out that the same pitches ar- 
ranged in different orders have different key implications (this has also 
been verified experimentally); this shows that pitch distribution alone can- 
not be sufficient to determine key (Butler, 1989, pp. 234-236). Other re- 
searchers, such as Winograd and Maxwell, have created algorithms that 
essentially use harmonic information as a basis for key judgments 
(Bharucha's connectionist algorithm is similar in this respect). However, it 
seems clear that harmonic structure alone is also not sufficient for key de- 
termination. Certainly it is easy to create passages with the same root pro- 
gressions that imply different keys (C-Dm-G7 implies C major, C-D7-G im- 
plies G major). It is even possible to devise passages in which only the 
ornamental dissonances differ, which nevertheless have different key impli- 
cations. Figure 17 gives an example; the first passage implies C major; the 
second, C minor. These demonstrations make it clear that neither pitch 
information alone nor harmonic information alone is enough to determine 
key; any robust key-finding algorithm must consider both.18 

The current algorithm offers a promising basis for such a key-finding 
system. The algorithm outputs two representations of a piece: the TPC 
representation and the harmonic representation. The TPC representation 
provides a useful indicator of the pitch collection of a passage; this pitch 

18. For a recent approach to key finding that uses both pitch and harmonic information, 
see Vos & Van Geenen (1996). 
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distribution could be summarized by finding the COG of the pitches in a 
passage, which would yield a single point on the line of fifths. The same 
could be done on the harmonic line of fifths; taking the COG of chord 
spans (weighting each one for its length) would provide a sort of harmonic 
"center" for the passage. Let us assume that each key has a characteristic 
"key point" on both the TPC line of fifths and the root line of fifths, repre- 
senting the typical COG location for a passage in that key. (An evenly 
distributed C-major scale would have a TPC COG around D; with regard 
to harmony, the root COG in a typical C-major progression is probably 
between C and G.) The key of a passage would then be the one whose key 
points were closest to the COGs of the roots and TPCs in the passage. One 
useful thing about this approach is that it would distinguish between major 
and minor keys. Relative major and minor keys (such as C major and A 
minor) have similar pitch collections but different root progressions; thus 
they would be expected to have similar pitch COGs but different root COGs. 
Parallel major and minor keys (such as C major and C minor) have similar 
root progressions but different pitch collections; thus their root COGs would 
be similar but not their pitch COGs. In short, each key should be character- 
ized by distinctive pair of pitch and root COGs. Preliminary tests have 
suggested that this approach could lead to quite a successful key-finding 
algorithm;19 however, it has not been implemented computationally. 

Results of the Implementation 

I will now present results of two tests of the computer implementation 
of the algorithm (written by Daniel Sleator, using the language C++).20 The 
program implements the algorithm exactly as it has been described. It ac- 
cepts a piece represented as pitches in time (more precisely, as a list of notes 
with on times and off times). It also requires metrical information, in the 
form of several levels of equally spaced beats (we have developed a succinct 
way of encoding this). The program generates a TPC representation, map- 
ping each pitch onto the line of fifths, and a harmonic representation, di- 
viding the piece into chord spans and labeling each one with a root (which 
is again a point on the line of fifths). In doing this, the program searches for 
the combined TPC-harmonic representation of the entire piece that maxi- 

19. See Temperley (1996, chap. 6) for examples and further discussion. 
20. The program is publicly available; it can be obtained and used by anyone with access 

to a UNIX system. The program is available via the web site <http://www.cs.cmu.edu/~sleator/ 
harmonic-analysis>. This web site contains all files necessary to run the program, as well as 
a number of input files, and a file README that explains how to use the program. The 
program accepts MIDI files as input; however, metrical information must be added by the 
user. Further explanation is provided at the web site. 
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mally satisfies both the harmonic rules and the pitch variance rule. Its pri- 
mary output is a list of the notes, giving their TPC labels, and a list of chord 
spans, giving the time points and roots of each one; both levels are dis- 
played in a graphic format similar to Figures 12 and 13. 

Using the program, we have tested the algorithm on a number of pieces. 
On balance, we are pleased with the results; however, the tests have also 
pointed out several problems with the algorithm. Figures 18 and 19 gives 
two examples of the program's output, which are roughly representative of 
its level of performance: the unaccompanied melody "Yankee Doodle" and 
the Gavotte from Bach's French Suite no. 5 (discussed earlier). In each case, 
the program's TPC representation was perfectly correct. (In the case of 
"Yankee Doodle," the correct TPC representation seems obvious; in the 
Bach, it is given by the score.) At issue, then, is the harmonic representa- 
tion. The harmonic representations generated by the program are repre- 
sented in Figures 18 and 19 with root names above the staff; each root 
name indicates a chord span that begins on the onset of the note beneath 
and continues to the beginning of the next span. Where I consider the 
algorithm's choice to be definitely incorrect, I have included my own analy- 
sis in brackets. (In several other cases, the program's analysis differs slightly 
from my own, but seems plausible; these are left as they are.) 

In the case of "Yankee Doodle," the algorithm's analysis is highly suc- 
cessful. There are two questionable choices: the second half of measure 3 (I 
would prefer a root of C over G here) and the first half of measure 6 (I 
would prefer G over D). But harmonizing the melody in this way would 
not be unreasonable. Unaccompanied melodies are an important test of the 
algorithm, because many of the harmonies are implied rather than fully 
stated. This melody provides a nice illustration of the algorithm's rules. 
The variance rule plays an important role, for example in the Fjf of measure 
2; by the compatibility rule, Ftt would be the preferred root for this pitch, 
but the variance rule overrules it, preferring D as a root, because D is closer 

Fig. 18. The melody "Yankee Doodle," showing the algorithm's harmonic analysis. Each 
letter above the staff indicates a chord span of that root, beginning at the onset of the note 
beneath the letter and extending to the beginning of the next span. 
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to G on the line of fifths. The same applies to measure 5; here, C is pre- 
ferred, although the compatibility rule would prefer a root of E. Although 
the compatibility rule is sometimes overruled, it is, of course, crucial; with- 
out it, the analysis would not in any way be constrained by the pitches in 
the piece. The strong-beat rule is also essential; while the fourth quarter of 
measure 1 (A-D) is given its own span, the eighth-note A in the first half of 
the measure is not, because this would mean starting the following span 
on a very weak beat; thus this note is treated as ornamental. Although 
many of the chord tones here could, in principle, be treated as ornamental 
(the second A in measure 1; the Ft in measure 8), the penalty for this is high 
enough (because the time interval to the next step wise event is fairly long) 
that another solution is preferred. 

Figure 19 shows a second example, the Bach Gavotte discussed earlier. 
In the first half of the piece, the program's analysis is mostly correct. One 
oddity is the eighth-note D span in measure 6 (there are several eighth- 
note spans in the second half as well). In general, the algorithm prefers to 
avoid eighth-note spans at this tempo because of the strong-beat rule; this 
overrules any penalties that would result from treating a note as ornamen- 
tal. However, when several ornamental notes are involved, their penalties 
sum together, making it preferable to treat them as chord tones. To my 
mind, there is a good deal of psychological reality to this; treating the 
fourth eighth of measure 6 as a chord is not implausible. This passage has 
one definite mistake: the algorithm treats the whole of measure 8 as one D 
span, while in fact the fourth quarter is clearly an A chord. The problem 
here is one that we have already discussed: the program is unable to handle 
escape tones, such as the final Ft of the measure. Because the Fl is not 
closely followed stepwise, it is not regarded as a possible ornamental dis- 
sonance, and the program must find some way of treating it as a chord 
tone. 

The second half includes several problematic passages. The first is mea- 
sure 12. The program assigns a root of D to the second half of the mea- 
sure; the correct choice is Ftml>5 (ii°/Em), a diminished triad. The problem 
here is that the algorithm has no notion of diminished triads ("k5" is not 
among its set of acceptable TPC-root relationships); this is clearly a seri- 
ous failing, which I hope to address. The analysis of the first quarter of the 
measure is also odd; C seems to be the correct choice. This points up an- 
other recurring problem with the algorithm: it often analyzes notes as l>7s 
(as in the seventh of a dominant seventh) in cases in which this is not 
appropriate, such as the D in the left hand here. (Perhaps context could be 
used in some way to constrain the identification of l>7s.) Second, the analy- 
sis of measures 18-20 is completely wrong. The problem here is that the 
passage consists largely of short notes in stepwise motion; in such cases, 
almost any note could be ornamental with a low penalty, so the algorithm 
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Fig. 19. The Gavotte from Bach's French Suite no. 5, showing the algorithm's harmonic 
analysis. 

has difficulty choosing the right roots. One possible solution would be to 
make the algorithm prefer ornamental dissonances on weak beats, other 
things being equal. It can be seen, in this passage, that the first eighths of 
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each half-measure are generally chord tones; perhaps the algorithm should 
give them more weight as determinants of the root (i.e., a higher penalty 
should be imposed for treating them as ornamental). This would also ad- 
dress the problem in measure 3 of "Yankee Doodle," noted earlier. A final 
problem here is the double neighbors in measures 16 and 19. Although in 
principle the algorithm can handle double neighbors, it seems that the or- 
namental dissonance penalty in these cases is slightly too high; in both 
cases, they are treated as chord tones instead (mistakenly, in my view). 

One general limitation of the algorithm - mentioned earlier - is that it 
only labels chord segments with roots, omitting other information about 
chords such as mode and extension. For example, it does not distinguish 
between C major, C minor, C-dominant seventh, and C-minor seventh; all 
are simply labeled C. However, in the process of choosing a root for a 
chord, the algorithm must determine the pitch-root relationships of each 
pitch in the chord, and in many cases this could easily be used to find mode 
and extension information. For example, in choosing the root for the first 
chord span of the Bach Gavotte (measure 1), the algorithm must identify 
the Gs as 1/G, the Bs as 3/G, and the Ds as 5/G. Given that the span con- 
tains the pitch-root relationships 1, 3, and 5, and not b7, it follows auto- 
matically that the chord must be a major triad. Problems arise, however, in 
cases in which the notes of the chord are not fully stated. In measure 8 of 
"Yankee Doodle," the chord implied is presumably G major, but no 3 or 5 
is present to indicate this. (On the other hand, in many cases, the exact 
identity of a chord seems to be psychologically indeterminate as well. In 
the second half of measure 7 of "Yankee Doodle," the root is clearly D; but 
is the implied chord D major or D7?) Until this problem is solved, the 
algorithm's performance remains somewhat incomplete. 

It is difficult to assess the program's performance overall - in compari- 
son, for example, with the earlier programs of Maxwell and Winograd. It 
is not clear that its performance on the Bach Gavotte is superior to that of 
Maxwell's program on a comparable piece, shown in Figure 2. However, 
several points should be made in favor of the current algorithm. As dis- 
cussed earlier, several phenomena, such as arpeggiations and implied har- 
monies, that are absolutely ubiquitous in tonal music are generally well 
handled by the present algorithm ("Yankee Doodle" is a case in point), but 
not by the earlier programs. Second, the earlier programs made use of in- 
formation such as key signatures, spellings, and rhythmic notation, which 
is not available in listening; the current algorithm does not. The current 
algorithm is also (at a conceptual level) vastly more simple and parsimoni- 
ous than the earlier programs, requiring only 5 rules, in contrast to the 36 
rules of Maxwell's algorithm. (Even the problems with the algorithm dis- 
cussed earlier seem to be fairly general ones, which might be solved with 
the addition of a few further rules of a similar character, rather than requir- 
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ing many ad hoc adjustments.) A final issue concerns acquisition: how might 
a preference rule system such as this one be learned? Both Bharucha and 
Parncutt offer explanations for how their models might be acquired, and 
this is certainly a point in their favor. But before the acquisition question 
can be addressed, one must have a model that is reasonably adequate for 
the task at hand. (The learning issue is another reason that parsimony is 
important; from a developmental perspective, a model with only a few 
rules seems more plausible than one with many.) I have no answer to this 
question at present, however, and ultimately it will have to be addressed. 
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