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What's Key for Key? The Krumhansl-Schmuckler 
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DAVID TEMPERLEY 
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This study examines the Krumhansl-Schmuckler key-finding model, in 
which the distribution of pitch classes in a piece is compared with an 
ideal distribution or "key profile" for each key. Several changes are pro- 
posed. First, the formula used for the matching process is somewhat sim- 
plified. Second, alternative values are proposed for the key profiles them- 
selves. Third, rather than summing the durations of all events of each 
pitch class, the revised model divides the piece into short segments and 
labels each pitch class as present or absent in each segment. Fourth, a 
mechanism for modulation is proposed; a penalty is imposed for chang- 
ing key from one segment to the next. An implementation of this model 
was subjected to two tests. First, the model was tested on the fugue sub- 
jects from Bach's Well-Tempered Clavier; the model's performance on 
this corpus is compared with the performances of other models. Second, 
the model was tested on a corpus of excerpts from the Kostka and Payne 
harmony textbook (as analyzed by Kostka). Several problems with the 
modified algorithm are discussed, concerning the rate of modulation, the 
role of harmony in key finding, and the role of pitch "spellings." The model 
is also compared with Huron and Parncutt's exponential decay model. The 
tests presented here suggest that the key-profile model, with the modifica- 
tions proposed, can provide a highly successful approach to key finding. 
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is an essential aspect of Western music. In an important sense, the 
key of a passage provides the framework whereby notes and harmo- 

nies are understood.1 Knowing the status of a pitch or a chord relative to 
the current key - for example, knowing that a pitch is the tonic scale de- 
gree, or that a chord is a IV chord - is much more important than knowing 
the identities of pitches and chords in absolute terms. At a larger level, key 
structure contributes greatly to the expressive effects of tonal music (eigh- 

1. Here, of course, I am referring to tonal music: music that conveys a sense of key or 
tonal center. 
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teenth- and nineteenth-century music in particular). As Charles Rosen (1971, 
p. 29) has shown, a modulation can act as a kind of "large-scale disso- 
nance," a conflict demanding a resolution; it is largely this that allows 
tonal music to convey a sense of long-range motion and drama. 

A good deal of work in music cognition has focused on key. Some of this 
work has explored the way in which the perception of other musical ele- 
ments is affected by the key context - for example, studies in which the 
perceived stability or appropriateness of pitches and chords is measured in 
different tonal contexts (Butler, Brown, & Jones, 1994; Krumhansl, 1990). 
Other studies have shown that the perception of melody is affected by tonal 
factors as well. Melodic patterns that project a strong sense of key are 
more easily remembered than others (Cuddy, Cohen, & Mewhort, 1981); 
melodies are more easily recognized if they are presented in a suitable tonal 
context (Cuddy, Cohen, &c Miller, 1979). The perception of modulation - 
change from one key to another - has also been studied. Thompson and 
Cuddy (1992) found that both trained and untrained listeners were sensi- 
tive to changes in key and that the perceived distances of modulations cor- 
responded well to music-theoretical ideas about key distance. In another 
study, Cook (1987) explored listeners' ability to detect whether a piece 
began and ended in the same key; listeners were indeed sensitive to tonal 
closure for short pieces, although this sensitivity declined greatly for longer 
pieces. Another aspect of key is the distinction between major and minor 
keys, which appears to be perceptible and important to the emotional con- 
notations of music even for very young children (Kastner &c Crowder, 1990). 

The studies just mentioned have strongly established the general psycho- 
logical reality and importance of key. Another crucial question to ask about 
key structure is how it is perceived: by what method do people determine 
the key of a piece or changes in key within a piece? Considerable attention 
has been given to this issue. In this study, I focus on one approach to this 
problem, the key-profile algorithm of Carol Krumhansl and Mark 
Schmuckler, described most extensively in Krumhansl's book The Cogni- 
tive Foundations of Musical Pitch (1990). I point to some important prob- 
lems with the Krumhansl-Schmuckler (hereafter K-S) algorithm and pro- 
pose solutions. With these modifications, however, I suggest that the 
key-profile model can provide a highly effective approach to key finding. 
Along the way, I will examine some alternative solutions to the key-finding 
problem. 

The approach of the current study is not experimental, but rather com- 
putational. My reasoning is that seeking a model that performs a task suc- 
cessfully may shed light on how humans perform the task. Of course, hav- 
ing a computer model that performs a task does not prove that humans do 
it the same way; this must be confirmed by other means. At the same time, 
if an algorithm does not achieve a reasonable level of success at a task 
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performed by humans, we know that it is not the way humans do it, re- 
gardless of other psychological evidence. When we have several successful 
models of key finding, we will have the luxury of choosing between them 
on the grounds of psychological plausibility. Until then, it seems reason- 
able to pursue a purely computational approach. 

Although I have said that my task is to model a task performed by hu- 
mans, it is important to specify which task by which humans. My goal 
here is to model what might be called expert judgments: judgments of 
music theorists and other highly trained musicians, made reflectively and 
analytically (e.g., in the course of doing an analysis). One might also con- 
sider composers' scores for this purpose (key signatures and titles of pieces); 
these are sometimes useful, although also somewhat limited, in that they 
indicate only the main key of a piece, not secondary keys. Although my 
model was devised largely by relying on my own judgment as to the 
correct keys of sections of pieces, I also test the model against other 
sources. 

Modeling expert judgments is not the only goal that might be pursued. 
One might also try to model the more ephemeral, unconscious judgments 
taking place during listening - either judgments of experts or of a broader 
population. In fact, the evidence so far (such as the studies mentioned ear- 
lier) suggests that there is considerable agreement between (trained and 
untrained) listeners' intuitions and expert judgments. In the original ex- 
periments on which the key-profile model was based (discussed further 
later), the subjects were musically trained but lacked extensive training in 
music theory (Krumhansl, 1990, p. 26). As Krumhansl's own tests have 
shown, the K-S model succeeds in predicting experts' judgments to a con- 
siderable degree, although it is somewhat flawed in this respect. Thus mod- 
eling expert analytical judgments and listeners' unconscious judgments may 
largely be convergent enterprises. But it is the former, rather than the latter, 
that primarily concerns us here. We should remember also that any failures 
by the K-S model to predict expert judgments should not necessarily be 
regarded as flaws in the model, because this is not what the model was 
primarily designed to achieve. 

The Krumhansl-Schmuckler Key-Finding Algorithm 

The Krumhansl-Schmuckler key-finding algorithm is based on "key pro- 
files." A key profile is a vector of 12 values, representing the stability of the 
12 pitch classes relative to a given key. The key profiles were based on data 
from experiments by Krumhansl and Kessler in which subjects were asked 
to rate how well each pitch class "fit with" a prior context establishing a 
key, such as a cadence or scale (Krumhansl &c Kessler, 1982). A high value 
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Fig. 1. The Krumhansl-Kessler key profiles, for C major (above) and C minor (below). 
(Data from Krumhansl, 1990, p. 80.) 

in the key profile means that the corresponding pitch class was judged to fit 
well with that key. Each of the 24 major and minor keys has its own key 
profile. The key profiles for C major and C minor are shown in Figure 1; 
other profiles are generated simply by shifting the values around by the 
appropriate number of steps. For example, whereas the C-major vector has 
a value of 6.35 for C and a value of 2.23 for Ci, Cft major would have a 
value of 6.35 for Ci and a value of 2.23 for D.2 As Krumhansl (1990, p. 29) 
notes, the key profiles reflect well-established musical principles. In both 
major and minor, the tonic position (C in the case of C major/minor) has 
the highest value, followed by the other two degrees of the tonic triad (E 
and G in C major, Et and G in C minor); the other four degrees of the 
diatonic scale are next (D, F, A, and B in C major; D, F, At, and Bt in C 
minor - assuming the natural minor scale), followed by the five chromatic 
scale steps. 

The algorithm judges the key of a piece by correlating each key profile 
with the "input vector" of the piece (Krumhansl, 1990, pp. 78-80). The 

2. The original data were gathered for a variety of keys, but there was little variation 
between major keys (after adjusting for transposition), so the data were averaged over all 
major keys to produce a major-key profile that was then used for all major keys; the same 
was done for minor keys (Krumhansl, 1990, pp. 25, 27). 
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input vector is, again, a 12-valued vector, with each value representing the 
total duration of a pitch class in the piece. Consider Figure 2, the first 
measure of "Yankee Doodle"; assume a tempo of quarter note = 120. Pitch 
class G has a total duration of 0.75 (seconds); A has a duration of 0.5; B 
has a duration of 0.5; D has a duration of 0.25; the other eight pitch classes 
have durations of 0, because they do not occur at all in the excerpt. The 
input vector for this excerpt is shown in Figure 2. The correlation value, r, 
between the input vector and a given key-profile vector is then given by 

l(x-x)(y-y) 
r =      

(l(x-xmy-y)2)m 
where x = input vector values, x = the average of the input vector values, y 
= the key-profile values for a given key, and y = the average key-profile 
value for that key. To find the key for a given piece, the correlations must 
be calculated between each key profile and the input vector; the key profile 
yielding the highest correlation gives the preferred key. 

Table 1 shows the results of the algorithm for the first measure of "Yan- 
kee Doodle." G major is the preferred key, as it should be. All the pitches in 
the excerpt are in the G-major scale (as well as several other scales); more- 
over, the first and third degree of the G-major tonic triad are strongly rep- 
resented, so it is not surprising that G major receives the highest score. 

The first modification I wish to propose is a simplification in the way the 
key-profile scores are calculated. The formula used in the K-S algorithm is 
the standard one for finding the correlation between two vectors (Ho well, 
1997). In essence, this formula takes the product of the corresponding val- 

Fig. 2. Measure 1 of "Yankee Doodle," with input vector showing total duration of each 
pitch class. 
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Table 1 

Key-Profile Scores for the First Measure of 
"Yankee Doodle" (Figure 2) 

Key Score 

C major .245 
Cf major -.497 
D major .485 
El» major -.114 
E major .000 
F major .003 
Ft major -.339 
G major .693 
A\> major -.432 
A major .159 
Bl» major -.129 
B major -.061 
C minor -.012 
Cl minor -.296 
D minor .133 
El» minor -.354 
E minor .398 
F minor -.384 
Ff minor .010 
G minor .394 
Al> minor -.094 
A minor .223 
Bl> minor -.457 
B minor -.436 

ues in the two vectors (the input vector and the key-profile vector, in this 
case) and sums these products. To use Krumhansl's metaphor, this amounts 
to a kind of "template-matching": if the peaks in the key-profile vector for 
a given key coincide with the peaks in the input vector, this number will be 
large. The correlation formula also normalizes both vectors for their mean 
and variance. However, if our only goal is to find the algorithm's preferred 
key for a given passage of music, these normalizations are not really neces- 
sary. We can obtain essentially the same result by defining the key-profile 
score simply as the sum of the products of the key-profile vector value and 
the input- vector value, or Jjcy - sometimes known as the "scalar prod- 
uct." The algorithm then becomes to calculate this score for all 24 keys and 
choose the key with the highest score.3 

3. Normalizing the input vector values for their mean and variance has no effect on the 
algorithm's judgments because the input vector is the same for all 24 keys. Normalizing the 
key-profile vectors does have a slight effect, however. Because the mean value for the minor- 
key profiles is a bit higher than for major-key profiles, removing this normalization tends to 
bias the algorithm toward minor keys, relative to the original K-S algorithm. However, this 
effect could be counteracted simply by adjusting the key-profile values. As we will see, the 
key-profile values seem to require significant adjustment in any case. 
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Improving the Algorithm's Performance 

Krumhansl (1990, pp. 81-106) reports several tests that were done of 
the algorithm. First, the algorithm was tested on the first four notes of each 
of the 48 preludes of Bach's Well-Tempered Clavier. (In cases in which the 
fourth note was simultaneous with one or more other notes, all the notes of 
the chord were included.) The algorithm chose the correct key on 44 of the 
48 preludes, a success rate of 91.7%. Similar tests were done on the first 
four notes of Shostakovich's and Chopin's preludes, yielding somewhat 
lower success rates: 70.8% and 45.8%, respectively. In another test, the 
algorithm was tested on the fugue subjects of the 48 fugues of the Well- 
Tempered Clavier and on the subjects of Shostakovich's 24 fugues. For 
each fugue, the algorithm was given a series of note sequences starting 
from the beginning of the piece: first the first note, then the first two notes, 
then the first three notes, and so on. At the point where the algorithm first 
chose the correct key, the test for that piece was terminated. On 44 of the 
Bach fugue subjects and 22 of the Shostakovich fugue subjects, the algo- 
rithm eventually found the correct key. As Krumhansl (1990, p. 93) ac- 
knowledges, this test is somewhat problematic, because it is unclear how 
stable the algorithm's choice was; it might choose the correct key after four 
notes, but it might have shifted to a different key if it was given another 
note. Thus it is difficult to draw any conclusions from this test as to the 
algorithm's success rate in finding the correct key for fugue subjects. Fi- 
nally, the algorithm was tested on each measure of Bach's Prelude no. 2 in 
C minor, and its judgments were compared with the judgments of two 
experts as to the key of each measure. In this case, however, the algorithm's 
results for all keys were combined and represented as a single point on a 
four-dimensional spatial representation of keys. Moreover, the algorithm's 
judgment for each measure was based on a weighted sum of the pitch dura- 
tions in the current measure and also previous and subsequent measures, in 
order to reflect the effect of context on key judgments. 

Although all of these tests are of interest, only the first group of tests 
provides clear data about the judgments of the basic algorithm for isolated 
segments of music. The algorithm's performance here was mixed: it per- 
formed much better on the Bach preludes than on the Shostakovich and 
Chopin preludes. However, one could argue that judging the key after four 
notes is unrealistic in the latter two cases, given their more complex tonal 
language. In any case, further tests seem warranted. 

An easy and informal way of testing the algorithm is by giving it a piece, 
having it judge the key for many small segments of the piece in isolation - 
measures, say - and comparing the results with our own judgments. This 
process was done by using a computer implementation of the algorithm, 
exactly as it is specified in Krumhansl's book. (For this test, then, the origi- 
nal formula was used, rather than the modified formula proposed here.) In 
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deciding what we think is the correct key for each measure, it is important 
to stress that each measure is to be regarded in isolation, without consider- 
ing its context, because this is what the algorithm is doing. This is not, of 
course, how we naturally listen to music, but considering the tonal impli- 
cations of a small segment of music taken out of context is, I think, not 
difficult to do. (Note that the current test differs from Krumhansl's test of 
the Bach Prelude no. 2, where both the experts and the algorithm were 
taking the context of each measure into account in judging its key.) 

Figure 3 shows the first half of the Courante of Bach's Cello Suite in C 
major (BWV 1009). The algorithm's preferred key is shown above each 
measure (the top row of symbols, labeled "Krumhansl-Schmuckler"). In a 
number of cases, the algorithm's choice is clearly correct; measure 1, for 
example. In some cases, the key is somewhat unclear, and the algorithm 
chooses one of several plausible choices (in measure 17, it chooses G major, 
although E minor would certainly be possible). In a number of cases, how- 
ever, the algorithm's choice seems doubtful; these cases are indicated with 
an exclamation mark. In measure 4, the algorithm chooses G major, al- 
though the measure contains an F - this pitch is not present in a G-major 
scale and, as a b7 scale degree, is indeed highly destabilizing to the key; 
however, all the notes of the measure are present in the C-major scale. 
Similar errors occurs in measures 14 and 16. In a number of other cases 
(measures 8, 22, 29, 30, 33, 34, and 35), the algorithm chooses a key de- 
spite the presence of a pitch outside the scale of that key and despite the 
existence of another key that contains all the pitches of the segment. This 
result suggests that the algorithm does not distinguish strongly enough be- 
tween diatonic and chromatic scale degrees. The algorithm also sometimes 
chooses minor keys when the lowered seventh or raised sixth degree of the 
key is present (e.g., measures 10 and 19), although these are much less 
common than the raised seventh and lowered sixth degree, that is to say, 
the "harmonic minor" scale. Altogether, the algorithm makes incorrect judg- 
ments on 13 of the 40 measures, a correct rate of 67.5%. The discrepancy 
between this result and the algorithm's performance on the opening four- 
note segments of the Bach preludes is worth noting. Inspection of the pre- 
ludes shows that a great number of them begin by outlining or elaborating 
a tonic triad. The Bach Courante would seem to provide a wider variety of 
melodic and harmonic situations, although of course it, too, is a highly 
limited sample. 

Inspecting the key-profile values themselves (Figure 1), it becomes clear 
why some of these errors occur. Although diatonic degrees have higher 
values than chromatic degrees, the difference is slight; in C major, compare 
the values for B (2.88) and Ft (2.52). In minor, we find that the flattened 
seventh degree (Bt in the case of C minor) has a higher value than the 
leading tone (B). This finding seems counterintuitive; as mentioned earlier, 
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Fig. 3. Bach, Suite for Violoncello No. 3 in C major, Courante, mm. 1-40, showing key 
judgments for each measure from three different key-finding algorithms. Minor keys are 
marked with "m"; all other keys are major. 

the flat seventh is quite destabilizing to the tonic, whereas the leading tone 
is often a strong indicator of a new tonic (consider the way Gtt in measure 
10 of the Bach Courante points toward A minor). In major, too, it seems 
odd that the leading tone has the lowest value of the seven diatonic de- 
grees. A related problem should be mentioned: the dominant seventh, which 
is usually taken as strongly implicative of the corresponding tonic key, is 
not so judged by the K-S algorithm. Rather, the G dominant seventh (for 
example) most strongly favors G major, B minor, D minor, D major, G 
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minor, and F major, in descending order of preference; C major is seventh 
on the list, with C minor even farther down. Finally, it seems likely that 
some of the minor values are too high; in general, there is a slight tendency 
for the model to choose minor keys more often than it should. (The total 
score for the minor triad, 16.46, is slightly higher than that for the major 
triad, 15.92, which seems odd.) 

A revised version of the profile is shown in Figure 4, which attempts to 
solve these problems. These values were arrived at by a mixture of theoreti- 
cal reasoning and trial and error, using a variety of different pieces for 
testing. (An attempt was made to keep all the values in the same range as 
those in the K-S algorithm, to permit easy comparison.) The basic primacy 
of the diatonic scale is still reflected; all diatonic steps have higher values 
than chromatic ones. In the case of minor, I assume the harmonic minor 
scale, so that be and 7 are within the scale and 6 and b7 are chromatic. All 
the chromatic degrees have a value of 2.0, with the exception of b7, which 
has a value of 1.5. The unusually low value for b7 proved necessary, in 
part, to achieve the right judgment for the dominant seventh, but it appears 
to lead to good results in general. All the diatonic degrees have a value of at 
least 3.5; land 6 in major, and 2 and b6 in minor, have exactly this value. 

Fig. 4. A revised version of the key profiles, shown for C major (above) and C minor (be- 
low). 
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Degrees 4 and 7 are given slightly higher values (4.0), reflecting their impor- 
tance (more on this later). The triadic degrees - \ % and 5 in major and % 
b% and 5 in minor - receive the highest values; the value for lis highest of 
all. The same values are used for both the major and minor tonic triads. 

These revised key profiles improve performance considerably on the Bach 
Courante. (I now use my modified version of the key-profile formula, rather 
than the original K-S version.) The results of the algorithm are shown as 
"Temperley I" in Figure 3; questionable choices are again marked with 
exclamation marks. In a few cases, two keys receive exactly equal scores; in 
such cases both keys are shown, for example "C/G." The algorithm now 
makes only 6.5 errors instead of 13. (If the algorithm chooses two keys and 
one of them seems incorrect, this is counted as half an error). The key- 
profile approach has another problem, however, that cannot be solved merely 
by tweaking the key-profile values. Consider measure 29; the pitches here, 
D-C-A-C-Ftt-C, outline a D dominant seventh. Given a simple D dominant 
seventh, with four notes of equal length played once, my algorithm (unlike 
the K-S algorithm) chooses G major and G minor equally as the preferred 
key. In measure 29, however, my algorithm chooses A minor. The reason is 
clear; there are three C's and one A, all members of the A-minor triad, 
giving a large score to this key that swamps the effects of the other two 
pitches. Yet perceptually, the repetitions of the C do not appear to strongly 
tilt the key implications of the measure toward A minor, or indeed to affect 
them very much at all. 

This finding raises a fundamental question about the key-profile approach. 
Even if we accept the basic premise of "template matching," it could be 
done in several ways. A different approach to template matching is found 
in Longuet-Higgins and Steedman's (1971) earlier key-finding algorithm. 
This algorithm processes a piece left to right (only monophonie pieces were 
considered). At each pitch that it encounters, it eliminates all keys whose 
scales do not contain that pitch. When it is left with only one key, this is the 
preferred key. (This is a somewhat simplified version of the model, which 
will be discussed further later.) We could think of the Longuet-Higgins/ 
Steedman model as implying a very simple key-profile model. In this model, 
each key has a "flat" key profile, where all the pitch classes in the corre- 
sponding diatonic scale have a value of one, and all chromatic pitch classes 
have a value of zero. The input vector is also flat: a pitch class has a value 
of one if it is present anywhere in the passage, zero if it is not. Choosing the 
correct key is then a matter of correlating the input vector with the key- 
profile vectors - which in this case simply amounts to counting the number 
of pitch classes scoring one in the input vector that also score one in each 
key-profile vector. We might call this a "flat-input /flat-key" profile model, 
as opposed to the "weighted-input/weighted-key" profile model proposed 
by Krumhansl and Schmuckler. Note that the Longuet-Higgins/Steedman 
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model (or rather the simplified version of it that I have presented here) 
handles a case such as measure 29 of the Bach better than the K-S model. 
All four pitch classes - D-Flt-A-C - are present in G major (and G minor) 
and no other keys; thus these keys (and these keys alone) receive a winning 
score of 4. However, the Longuet-Higgins/Steedman model also encoun- 
ters problems. In particular, the algorithm has no way of judging passages 
in which all the pitches present are in more than one scale. Consider mea- 
sure 1 of the Bach; this C-major arpeggio clearly implies C major, yet all of 
these pitches are also present in G major and F major (and several minor 
scales as well); thus the Longuet-Higgins/Steedman algorithm would have 
no basis for choosing between them. In this case, the K-S model is clearly 
superior, because it makes important distinctions between diatonic scale 
degrees. 

This result suggests that the best approach to key finding may be a com- 
bination of the Krumhansl-Schmuckler and Longuet-Higgins/Steedman 
approaches: a "flat-input/weighted-key" approach. That is, the input vec- 
tor simply consists of "1" values for present pitch classes and "0" values 
for absent ones; the key-profile values, on the other hand, are individually 
weighted, in the manner of Krumhansl's key profiles (and my revised ver- 
sion). (Judging pitch classes simply as "present" or "not present," without 
considering their frequency of occurrence at all, might not work so well for 
longer passages; but my model does not do this for longer passages, as we 
will see later.) The output of this version for the Bach Courante is shown in 
Figure 3 as "Temperley II." The algorithm's choice is at least reasonable on 
all 40 measures. In its judgments for small pitch sets, then, the current 
algorithm seems to represent an improvement over the original K-S model. 

Some connections should be noted between the values I propose and 
other theoretical work. Fred Lerdahl's (1988, p. 321) theory of tonal pitch 
space is based on a "basic space" consisting of several levels, correspond- 
ing to the chromatic scale, diatonic scale, tonic triad, tonic and fifth, and 
tonic, as shown in Figure 5. Lerdahl (1988, p. 338) notes the similarity 
between his space and Krumhansl's key profiles; both reflect peaks for dia- 
tonic pitch classes and higher peaks for triadic ones. My own key-profile 

Fig. 5. Lerdahl's (1988, p. 321) "basic space" (configured for C major). 
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values correspond more closely to Lerdahl's space than Krumhansl's do, in 
that pitch classes at each level generally have the same value - the excep- 
tions being the higher values for 4 and 7 and the lower value for k>7. (My 
profiles also assign equal values to the third and fifth diatonic degrees, thus 
omitting the "fifths" level). 

The higher values for 4 and 7 bring to mind another theoretical pro- 
posal, the "rare-interval" approach to key finding. David Butler (1989) 
has argued that certain small pitch class sets have particular relevance for 
key finding, because of their "rarity": the fact that they are only present in 
a small number of scales. A major second such as C-D is present in five 
different major scales; a tritone such as F-B is present in only two. Simi- 
larly, F-G-C is present in three major and two harmonic minor scales; F-G- 
B is present only in C major and minor. Although this is clearly true, it is 
not obvious that such considerations should be explicitly reflected in key 
profiles. This point requires some discussion. Let us assume a "flat-key/ 
flat-input" profile model, in which the key of a piece is simply given by the 
scale that contains the largest number of the pitch classes present. In such a 
case, both F-G-B and F-G-C receive a score of 3 for C major (let us con- 
sider only major keys for the moment). In the case of F-G-B, however, C 
major is the only key receiving this score and will thus be the clear favorite, 
whereas F-G-C will also receive scores of 3 from G major and F major and 
therefore should be ambiguous. In this sense, the importance of certain 
"rare" pitch sets would be an emergent feature of the system, despite the 
fact that 4 and 7 are treated no differently from other scale degrees in the 
key profile itself. Clearly, such emergent effects could arise from weighted 
key profiles as well, without necessarily giving special weight to 4 and 7. 
Nonetheless, my trial-and-error tests have shown that it is necessary to 
give special weight to 4 and 7 in the key profile. In particular, it is very 
difficult to achieve correct results on the dominant seventh (and related 
pitch sets) unless this is done. 

It is beyond the scope of this article to speculate on the reasons (histori- 
cal, cognitive, or psychoacoustical) for the apparent importance of the 4 
and 7 degrees, but I will offer one observation. Imagine a similarity space 
generated from the diatonic flat-key profile (again considering only the 
major keys), so that keys with highly correlated profiles were close to- 
gether. Each key would be closest to the two other keys with which it shared 
six pitch classes: for example, C major would be closest to F major and G 
major. It can be seen that 4 and 7 are the scale degrees that maximally 
distinguish each scale from its nearest neighbors. For example, C major 
shares all its pitches with G major except F (4 of C); it shares all its pitches 
with G except B (7 of C). Boosting these values in the key profile in effect 
lowers the similarity between each key's profile and the key profiles of its 
closest neighbors; the effect of this may be to "sharpen" the model, allow- 
ing it to produce clearer and less ambiguous judgments. (The unusually 
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low value for b7has a similar effect.) But whether this observation is of any 
significance requires further study. 

Modulation 

In one important sense, the K-S algorithm is not so much flawed as in- 
complete. The algorithm produces a single key judgment for a passage of 
music it is given. However, a vital part of tonal music is the shifts in key 
from one section to another. This is a complex matter, because there are 
different levels of key. Each piece generally has one main key, which begins 
and ends the piece, and in relation to which (in music theory anyway) inter- 
mediate keys are understood. An extended piece will generally contain 
modulations to several secondary keys - for example, the Bach Courante 
moves to G major around measure 9, then (in the second half, not shown 
in Figure 3) to A minor, and then back to C major; there may be even 
briefer tonal motions as well, so-called tonicizations (e.g., the momentary 
move to A minor in measures 10-11 of the Courante). One might propose 
the key-profile system as a way of determining the global level of key. I 
believe, however, that this is not the most sensible use of the key-profile 
model. What the key-profile system does well is determine the keys of sec- 
tions of pieces. It is probably true that most pieces spend more time in their 
main tonic keys than in other keys, in which case a key-profile model might 
often work. It seems to me, however, that the global key of a piece really 
depends on other factors; in particular, the key of the beginning and ending 
sections. (One global key algorithm that would succeed in the vast major- 
ity of cases would simply be to choose the key of the first - or last - section 
of the piece.)4 

The key-profile algorithm could easily be run on individual sections of a 
piece, once these sections were determined. Ideally, however, the division 
of the piece into key sections would be determined by the algorithm also; 
presumably, the same information that allows us to infer the correct key 
also allows us to infer when the key is changing. How might this work? 
One possibility is that the algorithm could simply examine many small 

4. Actual statistical analyses of entire pieces show mixed results. Krumhansl (1990, pp. 
66-71) reports that note counts in some pieces show a high key-profile correlation with the 
appropriate keys, although she does not show that these note counts correlate more highly 
with the "correct" key than with any other. In other studies, the results have been unprom- 
ising. Krumhansl (1990, pp. 71-73) found that the key-profile model predicted G major as 
the key of Schubert's Moment Musical no. 1, whereas the correct key is C major; Butler 
(1989, p. 225) found that the predicted key of the Moment Musical no. 2 was Eb major, 
rather than the correct Ab major. Of course, one might attribute these failures to the details 
of the algorithm, such as the fact that the key-profile values are not ideal. As I have said, 
however, I believe that using the key-profile model to predict global key is misguided. 
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segments of a piece in isolation; changes of key would then emerge at places 
where one segment's key differed from that of the previous one. However, 
this is not very satisfactory. Consider the Bach Courante. The preferred key 
of measure 3, considered in isolation, is probably G major; heard in con- 
text, however, it is clearly outlining a V chord, part of a C-major section. 
Once we begin to get a series of segments that clearly imply G major, though, 
we sense a definite shift in key. Intuitively, key has inertia: we prefer to 
remain in the key we are in, unless there is strong and persistent evidence to 
the contrary. A simple way of modeling this suggests itself: we apply the 
key-profile algorithm to each segment in isolation but also impose a pen- 
alty for choosing a key for one segment that differs from the key of the 
previous one. Generating a key analysis for a piece thus involves optimiz- 
ing the key-profile match for each segment while minimizing the number of 
key changes. In some cases, this might lead the model to choose a key for a 
segment that is not the best choice for that segment in isolation (e.g., in 
measure 3 of the Bach). However, if the scores for a segment or a series of 
segments favor another key strongly enough, then it will be worth switching. 

The algorithm just described was computationally implemented. The 
implementation of the algorithm searches for the highest-scoring key analysis 
of the piece it is given. A key analysis is simply a labeling of each segment 
of the piece with a major or minor key. (The input to the program must 
contain a segmentation of the piece into low-level segments. The program 
chooses a key for each segment; it considers changes of key only between 
segments, not within them. The division of the piece into segments in this 
way may seem somewhat arbitrary; I will return to this later.) Each seg- 
ment in an analysis yields a numerical score based on (1) how well its 
pitches fit the key chosen for that segment (according to the modified key- 
profile formula) and (2) whether the current segment has the same key as 
the previous one (if not, a penalty is applied). The score for an analysis is 
simply the sum of the key-profile scores and change penalties for each seg- 
ment. It may be noted that the number of possible analyses increases expo- 
nentially with the number of segments; however, the program uses dynamic 
programming to find the highest-scoring possible analysis without actually 
having to generate them all.5 

The program was tested on several pieces, including the Bach Courante. 
A change penalty of 6.0 was used; as before, measures were used as seg- 
ments. In the case of the Courante, the program's preferred analysis begins 
with a 12-measure section in C major; it then modulates to G major for the 
remainder of the first half. The second half moves to A minor at measure 

5. For discussion of this computational approach, which has been used elsewhere in 
musical preference rule systems, see Temperley and Sleator (1999). The computer imple- 
mentation described here, written in C, is publicly available at the website 
www.link.cs.cmu.edu/music-analysis. 
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44 and then to F major at measure 57, returning to C major at measure 65 
and remaining there until the end. This analysis seems largely correct. The 
move to G major should perhaps occur a little earlier (measure 9?); one 
could also argue that there is a brief move to D minor in measure 61 (alter- 
natively, one could argue that both the moves to F major and D minor are 
only tonicizations, not real modulations). One might also criticize the fact 
that the key sections are not overlapping - there are no "pivot chords"; I 
will return to this point. 

Aside from the key profiles themselves, there are two main numerical 
parameters in the program. One is the change penalty, the penalty for choos- 
ing a key for one segment different from that of the previous segment. By 
choosing a higher value, one can push the program toward less frequent 
changes and longer key sections; choosing a lower value has the opposite 
effect. Another, related, parameter is the length of segments. This is a com- 
plex matter, requiring some discussion. Consider an extended passage of 
music and assume for the moment that there is no modulation within the 
passage. Under the current proposal, the key-profile scores for the passage 
simply sum together the scores for the individual segments. Thus we can 
think of a passage as having an aggregate input vector that sums the values 
of the input vectors in each segment. Note that this aggregate input vector 
will not be "flat" but will to some extent reflect the frequency of occur- 
rence of pitch classes in the passage. Because a "flat" input profile is being 
used for the individual segments, however, the combined input vectors for 
two segments are not the same as the input vector for a single larger seg- 
ment containing both. If the two smaller segments contain the same pitch 
classes, the combined input vector value will be two for each pitch class 
present, whereas the value for the larger segment will be one. For a given 
passage, then, using shorter segments will produce larger key-profile scores; 
differences in scores between alternative analyses will be greater, and will 
be more likely to exceed the change penalty, so that changes in key will be 
more rapid. Unless this was adjusted, there would be a tendency for shorter 
segments to produce more rapid key changes. The solution is to adjust the 
key-profile scores by the length of segments. Then, roughly speaking, two 
smaller segments combined together will yield the same input vector as a 
larger segment containing both. Even with this adjustment, however, the 
length of segments still makes a difference. Consider, say, the first 8 mea- 
sures of the Bach Courante. If segments of only one note were used, then 
the overall input vector for the passage would count each note; in effect, 
the input profile would perfectly reflect the frequency of occurrence of pitch 
classes just as in the original K-S model. As the segments increase in length, 
the effect of frequency of occurrence diminishes and the input profile be- 
comes flatter (if the entire passage were considered as a segment, the input 
profile would be completely flat). Choosing a segment length allows one to 
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strike a balance between a completely flat profile and a completely weighted 
one. Segments of about 1 measure - typically between 1 and 2 s long - 
proved to be about optimal in this regard. (This also means that the tempi 
chosen for pieces may affect the program's analysis.) 

The Key-Profile Model as a Preference Rule System 

The key-finding algorithm I have proposed could be viewed as a simple 
preference rule system. A preference rule system is one that considers many 
possible analyses of a piece or passage, evaluates them by certain criteria, 
and chooses the highest-scoring one (Lerdahl &c Jackendoff, 1983; 
Temperley, 1997; Temperley &c Sleator, 1999). (The original K-S algorithm 
could be viewed as an even simpler preference rule system, with only one 
rule.) It is important to note that preference rule systems are not the only 
approach to modeling musical structure; indeed, some approaches that have 
been applied to key finding clearly are not preference rule systems. Rather, 
they are what might be called "procedural" systems: systems that are more 
easily described in terms of the procedure they follow rather than the out- 
put they produce. Longuet-Higgins and Steedman's model, mentioned ear- 
lier, provides a simple example. This algorithm begins by proceeding through 
a (monophonie) passage note by note, eliminating all keys whose scales do 
not contain the current note. If it reaches the end of the passage with more 
than one eligible key still remaining, it goes back to the beginning and 
looks at the first note. If this note is the tonic of one of the remaining 
eligible keys, that key is chosen; if not, and it is the dominant of one of the 
remaining keys, that key is chosen. If it ever takes a step that eliminates all 
remaining scales, it undoes that step, and then performs the tonic-domi- 
nant test just described. Clearly, a model such as this is quite different from 
a preference rule system, in which the preferred analysis is simply the one 
that best satisfies certain global criteria. 

Several other procedural models for key finding deserve mention. 
Holtzmann's (1977) model searches a melody for certain features, such as 
the tonic triad and the tonic fifth; it searches for these features first at the 
beginning and end of the melody and then at points in between. Also worth 
mentioning are Winograd's (1968) and Maxwell's (1992) systems for har- 
monic analysis. The intent of these systems is to produce a Roman nu- 
meral analysis, showing chord symbols, but this requires inferring key in- 
formation, because the appropriate Roman numeral symbol for a chord 
depends on the current key. In both systems, chords are first labeled in a 
"key-neutral" fashion; key sections are then identified, largely by search- 
ing for possible cadences and other conventional harmonic progressions 
(for a review of these systems, see Temperley, 1997). Yet another proce- 
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durai model is the parallel processing model of Vos and Van Geenen (1996). 
This model gathers evidence or "weight" for all keys, considering both 
pitch evidence (scale degrees of each key) and harmonic evidence (mem- 
bers of the tonic, dominant, and subdominant triads); in this respect, it 
somewhat resembles a key-profile model. However, the model also involves 
complex decision procedures - for example, adjusting the weights for keys 
under certain circumstances - which give it a more procedural flavor (Vos 
& Van Geenen, 1996, pp. 191-193.)6 

Although there is no a priori reason to prefer a preference rule system 
over a procedural one, preference rule systems have several advantages 
that should be mentioned. The first is their handling of real-time process- 
ing. Although my main aim here is to model analytical judgments, having a 
system that can model real-time listening as well is surely desirable, and it 
is interesting to consider how a preference rule system could accomplish 
this. Preference rule systems involve evaluating many analyses of an entire 
piece or passage and choosing the one that is preferred overall. Because the 
rules typically involve constraints between one part of the piece and an- 
other, segments of the piece cannot be analyzed in isolation; rather, the 
system must find the analysis of each segment that leads to the most pre- 
ferred analysis overall. In the case of the key-finding algorithm described 
earlier, the preferred analysis of one segment may depend on what hap- 
pened in the previous segment (or the following segment) due to the change 
penalty. This might at first appear to be a problem in terms of modeling 
real-time processing, because the best analysis for the piece overall is not 
known until the piece is over. However, preference rule systems present an 
elegant solution to this problem. Imagine that the key-finding algorithm 
proposed here processes a piece from left to right, segment by segment; at 
each segment S , it chooses the best possible analysis for the entire piece up 
to and including Sn. However, it may be that when it reaches Sw+1, the over- 
all best analysis for everything so far may entail a different analysis for 
segment Sn than the one initially chosen. In this way the algorithm natu- 
rally handles the "garden-path" effect: the phenomenon of revising one's 
hearing of a piece based on what happens afterwards. 

An example is shown in Figure 6, the Gavotte from Bach's French Suite 
No. 5 in G major (BWV 816). The algorithm's key analysis is shown above 
the staff; each key name indicates a new key section beginning at that seg- 
ment. (Again, a change penalty of 6.0 was used; measures were used as 

6. In discussing alternative models of key finding, we should also mention Bharucha's 
(1987) connectionist model. This model features three levels of nodes, corresponding to 
pitches, chords, and keys; sounding pitches activate pitch nodes, which activate chord nodes 
of the chords containing them, which in turn activate nodes of corresponding keys. Al- 
though this model is certainly of interest, it does not appear to have been tested in any 
significant way, so we will not consider it further here. 
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Fig. 6. Bach, French Suite No. 5, Gavotte, showing program's key analysis. 

segments.) Figure 7 shows a "running" analysis of the same piece. The 
segments of the piece are listed vertically; for each segment, the program's 
provisional analysis of the piece up to and including that segment is shown 
horizontally. The diagonal edge of the chart indicates the program's initial 
analysis for each segment at the moment it is heard. When the choice of 
key for a segment in a particular provisional analysis is identical to the 
choice in the previous analysis, only a hyphen ("-") is shown. In cases where 
keys of earlier segments are shown, this means that the program revised its 
initial key choice for a segment and chose something else instead - the "gar- 
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Fig. 7. A "running" analysis of the Bach Gavotte in Figure 6, showing the program's com- 
plete analysis at each segment. (The first segment contains only the first half-measure of the 
piece.) In cases where the program's choice for a segment is the same as its choice for that 
segment in the previous analysis, only a hyphen is shown. 

den-path" effect. For example, consider measures 5 and 6. At measure 5, 
the program was still considering the first five measures to be in G major. 
Given measure 6, however, the program decided that measure 5 would be 
better interpreted as being in D. Other garden-path effects are found at 
measure 9, measures 12-13, and measures 17-20. Notice that two of the 
provisional key sections in the running analysis - the move to B major in 
measures 12-13 and the move to C in measure 17-20 - are completely 
obliterated in the final analysis. 

Whether or not the running analysis in Figure 7 exactly captures our 
moment-to-moment hearing of the Bach Gavotte, it suggests that the cur- 
rent model might provide interesting insight into the kind of tonal analysis 
that goes on during listening. The program also sheds light on another 
phenomenon. It is widely agreed that modulations typically involve "pivot 
chords," chords that are compatible with both the previous key and the 
following one. In the Bach Gavotte, for example, the D-major chord in the 
second half of measure 9 could either be considered as I of D or V of G. 
This would imply that key sections generally overlap by at least one chord. 
The current approach holds out another possibility, however, which is that 
pivot regions are essentially a diachronic phenomenon. It is not that a chord 
is understood as being in two keys at one time, but rather it is first inter- 
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preted in one way, based on the previous context, and then in another way, 
under the influence of the following context. There is nothing in the pro- 
gram that actively searches for, or prefers, such diachronic pivot effects, 
but they often do seem to emerge at points of modulation. 

As well as their handling of real-time listening, preference rule systems 
have another emergent feature which deserves mention. Preference rule 
systems operate by considering many possible analyses of a piece, scoring 
them, and choosing the highest-scoring one. In so doing, they produce not 
only a preferred analysis of a given piece, but also a numerical score for 
that analysis (or a series of scores for the segments of the analysis). This 
can be regarded as a measure of how much the piece itself "satisfies" (or 
permits a satisfactory analysis from) the preference rules. Daniel Sleator 
and I have argued elsewhere that this is a musically interesting aspect of 
preference rule systems with regard to meter and harmony (Temperley &C 
Sleator, 1999). With regard to key, the scores tell us how well the passage 
in question could be accommodated within a key or series of keys; we 
might call these "key-fit" scores. When a passage scores low, that means 
that no suitable key could be found for it (or that many modulations were 
required to do so). One problem here is that, under the current algorithm, 
a segment containing more pitch classes will generally have a higher score; 
this makes it difficult to compare scores across segments. We can cancel 
this by defining the "key-fit" score as the key-profile scores divided by the 
number of pitch classes in the segment. 

One straightforward use of these measures is as a measure of the tonalness 
(or the "being-in-a-key") of pitch class sets. Consider the three-note pitch 
class sets found in Figure 8; if these are run individually through the algo- 
rithm, the key-fit scores shown above the staff are produced. The major 
and minor triads score equally high; both can be accommodated within a 
diatonic scale (several scales, in fact), and each one matches the peaks of 
one particular key for the tonic triad (1, 3 or b3, and 5). The diminished 
triad and augmented triad score lower; they can be accommodated within 

Fig. 8. Some pitch class sets and their "key-fit" scores. The key-fit score is the highest key- 
profile score obtained by the algorithm, divided by the number of pitch classes in the set. 
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diatonic scales (the diminished triad fits one major and four minor scales; 
an augmented triad fits three harmonic minor scales) but are not tonic 
triads. The pitch class set <012> scores lowest of all, reflecting the fact that 
it cannot fit into any scale. Turning to larger pitch class sets, the major and 
harmonic minor scales (which score equally) score higher than the whole- 
tone and octatonic scales; these in turn score higher than the complete 
chromatic scale. These ratings seem to correspond well with intuition as to 
the "tonalness" of these various pitch class sets. (Note that these are the 
scores yielded for the program's preferred key. In the case of the augmented 
triad and the whole-tone, octatonic, and chromatic scales, several keys are 
equally preferred, because these sets are symmetrical. Remember also that 
the key-profile score for a segment is divided by the number of pitch classes 
to produce the key-fit score.) The close fit between the key profiles and the 
major and minor scales and tonic triads has, of course, been observed be- 
fore (earlier in this paper, and by Krumhansl with respect to her original 
key profiles). Still, it is an attractive feature of the key-profile model that it 
yields a measure of the tonalness of any arbitrary pitch set. 

These key-fit scores may also capture an important aspect of listening. 
Figure 9 shows an excerpt from Chopin's Mazurka op. 17, no. 4, a piece 
famous for its tonally unstable nature. The program analyzes this passage 
as being in A minor throughout.7 The scores for each segment reflect how 
well the pitch classes of the segment fit with A minor. A U-shaped trajec- 
tory emerges. Beginning fairly firmly in A minor, the piece flirts with C 
major in measures 7-8 (introducing G, foreign to the A harmonic minor 
scale); in measure 9, the piece moves further afield (three of the four pitches 
in the measure are outside A minor), and then back toward A minor. This 
reflects one aspect of the rising and falling musical tension of the phrase - 
only one aspect, to be sure, because there are many other aspects to musi- 
cal tension (voice leading, harmony, psychoacoustic dissonance, and so on) 
that the model does not capture. The most interesting aspect of these scores 

Fig. 9. Chopin, Mazurka op. 17, no. 4, mm. 5-12. The numbers above the staff show the 
key-fit scores for each measure, relative to A minor. 

7. This A-minor analysis is the one that the program produces having analyzed the entire 
excerpt. Its moment-to-moment analysis might of course be different, as was the case with 
the Bach Gavotte discussed earlier. 



What's Key for Key? 87 

is that nothing special has to be done to produce them; they are a natural 
by-product of the program's search for the preferred analysis. 

Testing the Model 

The model described in the preceding section was subjected to two for- 
mal tests. First, it was tested on the 48 fugue subjects from Bach's Well- 
Tempered Clavier; then, on a series of excerpts from the Kostka-Payne 
theory textbook. Some general comments are needed on how the tests were 
done. 

The input required for the program is a list of notes, with a pitch, on- 
time, and off-time for each note; the program can process this information 
in the form of a MIDI file. Because the program requires absolute time 
information, decisions had to be made about the tempi of pieces, as I ex- 
plain later. In all cases, trills, ornaments, and other notes shown in small 
noteheads were excluded, owing to the difficulty of deciding objectively on 
the timing for these. The program also requires a list of segments, with 
each segment having a start time and end time. (The piece must be exhaus- 
tively partitioned into nonoverlapping segments.) It seemed logical to have 
segments correspond to measures, or some other level of metrical unit (such 
as half-measure or 2-measure units). It also seemed important to have strict 
criteria for the length of segments, because this may influence the analysis. 
The following rule was used: given the tempo chosen, the segments used 
corresponded to the fastest level of metrical unit above 1 s. For example, if 
a piece (at the tempo I chose) had 4/4 measures that were 1.6 s long, the 
measure was used as the unit (because the faster unit, half-measures, would 
be 0.8 s); however, if the measures were 2.2 s long, then half-measures 
would be 1.1 s long and could be used. In 45 of the 48 Well-Temp ered- 
Clavier cases, and 43 of the 46 Kostka-Payne cases, this resulted in a seg- 
ment level between 1.0 and 2.0 s; in the remaining cases, the segment length 
was slightly more than 2.0 s (these were slow triple meter pieces, where 
there was no level between 1.0 and 2.0 s ). In cases where the excerpt began 
with an incomplete segment, this portion was treated as a separate segment 
if it was at least half the length of a regular segment; otherwise it was 
absorbed into the following segment. Partial segments at the end of the 
excerpt were always treated as complete segments. 

The key profiles themselves were not in any way modified to improve 
the program's score on these tests. (As noted earlier, the key-profile values 
were set on the basis of theoretical considerations and tests on other pieces.) 
However, the change penalty value was modified; on each test, different 
values were tried, and the value was used that seemed to yield the best 
performance. (Both the Bach and Kostka-Payne corpora involve modula- 



88 David Temperley 

tions, as I will explain.) For the Bach fugues, a penalty of 6.0 was used; for 
the Kostka-Payne corpus, the penalty was 12.0. As discussed earlier, key 
structure is generally thought to be hierarchical; a piece may have one level 
of large-scale key changes and another level of tonicizations. It seemed fair 
to adjust the program's change penalty to allow it to maximally match the 
level of key change in each test corpus. 

For the purposes of the current tests, all enharmonically equivalent keys 
were regarded as the same. For example, if a Bach fugue was notated as 
being in At major and the program labeled it as Gl major, this was still 
considered correct. (The same applies to the Kostka-Payne test.) The pro- 
gram does not distinguish between different "spellings"; I will discuss later 
how this problem might be addressed. 

There were two reasons for choosing the fugue subjects from the Well- 
Tempered Clavier as a test corpus. First, the correct keys of the pieces is 
obvious, from the key signatures and also from the well-known ordering of 
pieces within the collection (C major, C minor, Ctt major, Ctt minor, and so 
on). Another reason for using this corpus was that it has also been used in 
several other key-finding studies and therefore provides a basis for com- 
parison. Longuet-Higgins and Steedman (1971), Holtzmann (1977), and 
Vos and Van Geenen (1996) all tested their systems on the corpus 
(Holtzmann uses only Book I, the first 24 fugues). Krumhansl also tested 
the K-S model on the fugue subjects. However, as noted earlier, her test was 
problematic, in that she stopped the algorithm when it had reached the 
correct key, without giving any measure of how stable that decision was. 
The other algorithms either self-terminated at some point or ran to the end 
of the subject and then made a decision. 

Because it is not always clear where the fugue subjects end, decisions 
have to be made about this. Vos and Van Geenen rely on the analyses of 
Hermann Keller (1976) to determine where the subjects end; I used this 
source as well. (It is not clear how Longuet-Higgins &C Steedman and 
Holtzmann made these decisions.) Another problem concerns modulation; 
many of the fugue subjects do not modulate, but several clearly do. Here 
again, Vos and Van Geenen rely on Keller, who identifies modulations in 
six of the fugue subjects.8 Longuet-Higgins and Steedman's and Holtzmann's 
systems are not capable of modulation; they simply sought to identify the 
correct main key. 

Longuet-Higgins and Steedman's algorithm found the correct main key 
in all 48 cases. Holtzmann's found the correct key in 23 of the 24 cases in 
Book I. Vos and Van Geenen's program detected the correct key as one of 

8. Vos and Van Geenen's assumption that only six of the fugue subjects modulate is not 
necessarily correct. Keller mentions modulations in only six cases, but it is not clear that he 
would have mentioned all cases. It appears that several others may modulate: Book II, 
number 10, for example. However, we will disregard this for now. 
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its chosen keys in 47 of 48 cases; it also detected modulations in 2 of the 6 
cases noted by Keller. However, it also found modulations (and hence mul- 
tiple keys) in 10 other cases in which there was no modulation. 

The current program was run on all 48 fugue subjects. For the tempi, I 
used the suggested tempi in Keller (1976). Segments were determined in the 
manner described earlier; the program chose one key for each segment. 
The current system, of course, has the option of modulating and was al- 
lowed to modulate wherever it chose. Its performance on the corpus is 
shown in Table 2. On 42 of the 48 fugues, the system chose a single key 
that was the correct opening key. In two cases, there were ties; in both 
cases, the correct key was among the two chosen. If we award the program 
half a point for the two ties, this yields a score of 43 out of 48. Of the six 
modulating fugues, it modulated on two of them (moving to the dominant 
in both cases, as is correct). On three of the nonmodulating subjects, the 
program incorrectly modulated (in all three of these cases it chose the cor- 
rect opening key). In one modulating theme (Book I, No. 10), the program 
chose the second key as the main key. There were thus four nonmodulating 
themes where the program chose a single, incorrect, key. 

It is rather difficult to compare the performance of the various programs 
on this test. Longuet-Higgins and Steedman's system, and then Holtzmann's, 
perform best in terms of finding the main key of subjects (although their 
inability to handle modulation is of course a limitation). (Compared with 
Vos and Van Geenen's system, the current program seems slightly better. 
The current program produced a perfectly correct analysis in 36 cases, Vos 
and Van Geenen's in 34 cases.) Although the success of the Longuet-Higgins/ 
Steedman and Holtzmann programs is impressive, we should note that the 
programs are rather limited, in that they can handle only monophonie pas- 
sages at the beginning of pieces. When the Longuet-Higgins/Steedman al- 
gorithm is unable to choose a key by eliminating those whose scales do not 
contain all pitches present, it chooses the key whose tonic or dominant 
pitch is the first note of the theme (this rule is needed on 22 of the 48 Bach 
fugue subjects). Holtzmann's approach also relies heavily on the first and 
last notes of the theme. Clearly, this approach is useful only at the begin- 
nings of pieces; it is of no help in determining the keys of internal sections, 
because there is no obvious "first note." (Relying on the last note of the 
theme, as Holtzmann does, is even more problematic, because it requires 
knowing where the theme ends.) Still, it is of course possible that special 
factors operate in key finding at the beginning of pieces; and it does seem 
plausible, in some of these cases, that some kind of "primacy factor" is 
involved. (A "first-note" rule of this kind could possibly be incorporated 
into the current algorithm as a preference rule, but I will not address this 
here.) Another way of addressing this would be by considering harmonic 
information, as I discuss later. 



Table 2 
The Program's Performance on the 48 Fugue Subjects of Bach's 

Well-Tempered Klavier 
Number Opening Key Modulating?* Program's Opening Key* Modulation Found?* 

Bookl 
1 Cma 
2 Cmi 
3 Cf ma 
4 Ctmi 
5 Dma Gma 
6 Dmi 
7 Ekna Yes 
8 Dfcni 
9 Ema 

10 Emi Yes Bmi 
11 Fma 
12 Fmi 
13 Ft ma 
14 Ff mi Yes (incorrect) 
15 Gma 
16 Gmi 
17 Akna 
18 Gtmi Yes Yes (correct) 
19 Ama Yes 
20 Ami 
21 Bkna 
22 Bkni 
23 Bma 
24 Bmi Yes Yes (correct) 

Book 2 
1 Cma 
2 Cmi 
3 Ctma 
4 Ctmi 
5 Dma Gma 
6 Dmi 
7 Ekna Ekna/ Akna 
8 Dttmi 
9 Ema 

10 Emi Yes (incorrect) 
11 Ema 
12 Fmi 
13 Ft ma Bma 
14 F» mi 
15 Gma 
16 Gmi Gmi/Bkna 
17 Akna 
18 Gtmi 
19 Ama 
20 Ami Yes 
21 Bkna 
22 Bkni Yes (incorrect) 
23 Bma 
24 Bmi 

*No unless marked yes. 
fIf incorrect or tie. 
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Next, an attempt was made to give the program a more general test. 
Because part of the purpose was to test the algorithm's success in judging 
modulations, it was necessary to have pieces where such key changes were 
explicitly marked. (Again, musical scores usually indicate the main key of 
the piece in the key signature, or in other ways, but they do not generally 
indicate changes of key.) A suitable corpus of data was found, namely, the 
workbook and instructor's manual accompanying Stefan Kostka and Dor- 
othy Payne's textbook Tonal Harmony (1995a). This workbook (Kostka 
& Payne, 1995b) contains a number of excerpts from tonal pieces (almost 
all of them in the standard tonal repertory) requiring the student to add 
harmonic and key symbols. The instructor's manual contains answers to 
the exercises (done by Stefan Kostka, 1995); it also contains a few ana- 
lyzed excerpts not included in the workbook. This source was chosen be- 
cause it was the only such source that was (a) well-known and well-re- 
spected, and (b) contained a large number of real (as opposed to artificial 
or especially composed) excerpts with analysis provided. An example of 
one of Kostka's analyses is shown in Figure 10. All that concerns us here is 
the key symbols, the letters followed by colons beneath the score (C major 
and G major, in this case). (Note that the second measure contains a pivot 
chord, a segment that is in two keys at once.) In some cases the analysis is 
presented separately from the score; in such cases, the marking of mea- 
sures in the analyses makes it clear how the analysis corresponds to the 
score (which is always included either in the workbook or the instructor's 
manual). 

The sample chosen consisted of all the musical examples in the Kostka- 
Payne workbook and instructor's manual that fit certain criteria. First, they 
had to have explicit key information provided (in the form of key sym- 
bols). Second, they had to be at least 8 measures long. With very short 
excerpts, it seemed possible that context would be required to determine 
the key of the excerpt. Third, the excerpts in the last two chapters of the 
book - entitled "Tonal Harmony in the Late Nineteenth Century" and "An 
Introduction to Twentieth-Century Practices" - were excluded; the authors 
themselves note that many of the excerpts included in these chapters "defy 
tonal analysis" (Kostka & Payne, 1995a, p. 451). This left a corpus of 46 

Fig. 10. An excerpt from one of the harmonic analyses in Kostka's instructor's manual. 
(Reprinted from Kostka, 1995, p. 110, with permission of The McGraw-Hill Companies). 
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excerpts. Again, decisions had to be made as to the tempo of each excerpt; 
I simply used my judgment to choose what seemed like reasonable templ. I 
did not include any tempo fluctuations or changes in any of the excerpts. 
(As it happened, there were no excerpts in which internal tempo changes 
seemed terribly important.) 

The program's analyses of the 46 excerpts were then compared with the 
analyses of the excerpts in Kostka's instructor's manual. For each segment 
in which the program's key choice was the same as Kostka's, one point was 
given. One problem was what to do if a segment was notated (by Kostka) 
as being partly in one key and partly in another. A related problem con- 
cerned pivot chords. The Kostka analyses contained many such chords, 
which were notated as being in two keys simultaneously. (As noted earlier, 
the program itself does not allow changes of key within a segment; nor 
does it allow multiple keys for a segment, except in rare cases of exact ties.) 
The solution adopted was this. When a segment contained either a pivot 
chord or a change of key - we could call such segments "bitonal" - then 
1/2 point was given if the key chosen by the program was one of the keys 
given by Kostka. Otherwise, zero points were given. In a way, this rule is 
hard on the algorithm, because it means that in analyses with pivot chords, 
it is impossible for the program to receive a perfect score. (Because 52 out 
of a total of 896 segments in the Kostka-Payne corpus are bitonal, and the 
program cannot score more than 1/2 point on each of these, its total score 
cannot exceed 870/896 = 97.1 %.) On the other hand, one might regard the 
program's inability to handle pivot chords as an inherent flaw, for which it 
should be penalized. In cases where the program produced an exact tie, in 
which one of the keys chosen was the correct one, half a point was given 
for the segment. 

Out of 896 segments, the program attained a score of 751: a rate of 
83.8%. The program found 40 modulations, exactly the same number as 
occurred in Kostka's analyses. It is useful to divide the sample according to 
where the excerpts occur in the workbook. Like most theory texts, Kostka 
and Payne's begins with basic chords such as major and minor triads and 
dominant sevenths and then moves on to chromatic chords - augmented 
sixths, Neapolitans, and the like. Thus we can divide the examples into 
two groups: those that occur in the chapters relating to diatonic chords 
(chapters 1-21), and those occurring in the later chromatic sections (chap- 
ters 21-26). Viewed in this way, the program scored a rate of 91.4% on 
the earlier chapters, 75.6% on the later ones, demonstrating a better abil- 
ity for more diatonic passages. (A possible reason for this will be discussed 
later.) 

To my knowledge, no earlier key-finding system has been subjected to a 
general test of this kind, so it is difficult to draw comparisons between 
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systems.9 Although the program's performance on the Well-Temp ered-Cla- 
vier and Kostka-Payne tests certainly seems promising, it was not perfect, 
and it is instructive to consider the errors it made. In a number of cases in 
the Kostka-Payne corpus, the error was simply that the program's rate of 
modulation was wrong: it either modulated too rarely, missing a move to a 
secondary key, or it modulated too often, changing key where Kostka does 
not. An obvious ad hoc solution is to modify the change penalty. In almost 
all such cases, a virtually perfect analysis was obtained simply by making 
the change penalty higher or lower. Still, it is clearly a flaw in the program 
that this parameter has to be adjusted for different pieces. Possibly the 
program could be made to adjust the change penalty on its own, but it is 
not clear how this might be done. 

In a few other cases, the problem is clearly not with the rate of modula- 
tion. In one case, Chopin's Mazurka op. 67 no. 2 (measures 1-16), the 
program chose a single incorrect key for the entire excerpt. The solution 
here may lie in harmony; the prevalence of G-minor triads here should 
perhaps have cued the program that G minor was the correct choice. Possi- 
bly a preference rule could be added that would give a bonus to a key for 
each occurrence of its tonic harmony. (Of course, the pitch classes of each 
key's tonic harmony already favor that key through the key profile.) It does 
not appear that such a rule in itself would improve performance much on 
the Bach fugue subjects. Possibly it could be combined with a primacy rule, 
so that a bonus was given to the key whose (implied) tonic harmony began 
the piece. For the program to use harmonic information, of course, it would 
need to recover the harmonic structure of the input - a complex and diffi- 
cult problem, particularly in the case of monophonie passages like the Bach 
fugue subjects (see Temperley, 1997). 

Harmony is also important in other excerpts in the Kostka-Payne cor- 
pus. Consider Figure 11, part of an excerpt from a Schumann song. Kostka 
analyzes this passage as being in Bt major, but the program finds it to be in 
F major. The problem is the French sixth chords, Gt-Bt-C-E. (A French 
sixth can be thought of as an inverted dominant seventh - C7, in this case - 
with a flattened fifth.) The French sixths are followed by F-major chords, 

9. KrumhansPs tests of the algorithm have already been described. Tests on the Well- 
Tempered Clavier fugue subjects by Longuet-Higgins and Steedman, Holtzmann, and Vos 
and Van Geenen have been mentioned also. Vos and Van Geenen also tested their model on 
fugue subjects of other composers. Holtzmann tested his model on a corpus of 22 other 
melodies, but it is not clear how these melodies were chosen. Longuet-Higgins and Steedman's, 
Holtzmann's, and Vos and Van Geenen's tests were all limited to monophonie excerpts. 
Winograd presents tests of three short pieces; Maxwell gives results for two pieces. 

MIDI files for the excerpts from the Kostka-Payne workbook used in the test described 
here are publicly available at the website www.link.cs.cmu.edu/music-analysis. It is hoped 
that this will facilitate testing of other key-finding models on the Kostka-Payne corpus. 
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Fig. 11. Schumann, "Die beide Grenadiere," mm. 25-28. 

as is customary; by convention, this progression would normally be inter- 
preted as Fr6-V in Bt major (or minor). However, the progression involves 
two pitches outside of Bt major (G> and E), so it is not surprising that Bl> 
major is not chosen by the current model. The Fr6-V progression is then 
repeated in other keys, causing further problems for the model. In order to 
get such a passage right, the model would presumably have to know some- 
thing about harmony: specifically, the conventional tonal implications of 
Fr6-V progressions. Similar problems arise in excerpts involving other chro- 
matic chords, such as Neapolitan chords and other augmented sixth chords. 

The current tests suggest, then, that harmonic information is a factor in 
key finding. This is not surprising, in light of the studies by Brown (1988) 
and Butler (1989). These authors have shown that the same pitches ar- 
ranged in different ways can have different tonal implications. In Figure 
12a, for example, the pitches F-B-E-C clearly imply C major; arranged dif- 
ferently, in Figure 12b, they are much more ambiguous in their implica- 
tions. These judgments were obtained experimentally as well (Butler, 1989). 
A natural explanation for these results is that harmony plays a role in key 
finding. In Figure 12a, an implied progression of G7-C clearly suggests C 
major; the E-F progression in Figure 12b is more ambiguous. In practice, 
however, it does not appear that such situations arise with great frequency; 
it is relatively rare that harmonic information is necessary. Most of the 
cases where it is needed involve chromatic chords whose tonal implications 
contradict the normal tonal implications of their pitch classes. 

Another area where the program might be improved is the key-profile 
values themselves. These could undoubtedly be refined, although it is not 

Fig. 12. The same set of pitches can have different tonal implications when arranged in 
different ways (Butler, 1989). 
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clear how much gain in performance would result. This could be done 
computationally, using a "hill-climbing" technique to arrive at optimal 
values. It could also be done by taking actual tallies of pitch classes in 
pieces (relative to the key), and using these as the basis for the key-profile 
values.10 However, I will not explore this further here. 

Spelling Distinctions and the "Line of Fifths" 

One final kind of information that deserves mention is spelling. Both the 
original K-S algorithm and my modifications of it have assumed what might 
be called a "neutral" model of pitch classes, in which pitch events are sim- 
ply sorted into 12 categories. In music notation and tonal theory, however, 
further distinctions are normally made between different spellings of the 
same pitch, for example At and Gtt; we could call these categories "tonal 
pitch classes" (TPCs), as opposed to the 12 "neutral pitch classes" (NPCs) 
of pitch class set theory. These distinctions are often applied to chords and 
keys as well. We can imagine TPCs represented on a "line of fifths," similar 
to the circle of fifths except extending infinitely in either direction. I have 
proposed elsewhere that the spelling labels of pitch events are an important 
part of tonal perception and, furthermore, that these labels can be inferred 
from context without relying on top-down key information, using prefer- 
ence rules (Temperley, in press). Most importantly, there is a preference to 
spell events so that they are close together on the line of fifths; for example, 
given the pitches Dtt-E-Ftl-Gtt/AI>, there is a preference to spell the final event 
as Gtt rather than At because the first spelling locates this event closer to 
previous events. (Harmony and voice leading also play a role in spelling.) 

If it is possible to infer spelling labels without using key information, 
this raises the possibility that spelling might be used as input to key deter- 
mination. Tests of the original K-S algorithm showed a number of cases in 
which this might be useful. Consider Figure 13 - measure 65 from the Bach 
Courante discussed earlier, containing the pitches Gi-F-E-D-C-B. The K-S 
algorithm chooses F minor for this measure. If the first pitch event were 
spelled as At, this would be a reasonable choice. If the first pitch is Gi, 
however, F minor is clearly incorrect; A minor is much more likely. It seems 
plausible that the spelling of the first event as Gtt could be determined from 
context - for example, by its voice-leading connection to the A in the next 
measure; the key-profile model could then distinguish between the differ- 
ent tonal implications of Gtt and Ak What would such a TPC key profile 

10. If the key-profile values were to be based on pitch class distribution in pieces, this 
information would have to be gathered relative to the local key rather than the main key - 
unlike the pitch class tallies by Krumhansl and Butler mentioned earlier (see footnote 4). 



96 David Temperley 

Fig. 13. Excerpt from Bach's Cello Suite No. 3, Courante, mm. 65-66. 

look like? A straightforward proposal is shown in Figure 14, for the key of 
C major. The "line of fifths" is represented on the horizontal axis. TPCs 
that are diatonic relative to C major have the same values as in the NPC 
profile (as shown in Figure 4). All other TPCs close to the tonic (within five 
steps to the left or six steps to the right) are given a value of 2.0, except for 
t>7 (this is the same as for chromatic NPCs in my original profile); all other 
TPCs are given a value of 1 .5. For example, E is 3 of C major, and thus is given 
a value of 4.5 (as in my NPC profile); B is chromatic relative to C major, thus 
its value is 1.5. Profiles could be constructed for minor keys on the same prin- 
ciples. 

A version of the key-finding program was devised using TPC profiles of 
this kind, and it was tested on the Kostka-Payne corpus. (Spelling labels for 
notes were added to the input files, usually corresponding exactly to the 
spellings in the notated score.)11 The TPC version attained a score of 87.4% 
correct: a modest improvement over the NPC version's score of 83.8%. In 
some cases, the reasons for the superior performance of the TPC profile are 
quite subtle. In Chopin's Mazurka op. 67 no. 2 (discussed earlier), whereas 
the NPC version of the program mistakenly analyzed the excerpt as being 
in Bl> major, the TPC version correctly identified the key as G minor. This 
excerpt contains many Fis; the TPC profile considers Ft to be less compat- 
ible with Bl> major than G\> would be. That G\> is more compatible with Bl> 

Fig. 14. A "tonal-pitch class" key profile for C major. 

11. Occasionally, spellings of pitches may be chosen for reasons of notational conve- 
nience. For example, a composer might modulate from Dt major to A major, avoiding the 
difficult-to-notate (but musically more logical) BU> major. In such cases, I used the musically 
logical spelling rather than the notated one. 
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major than Ft may seem, at best, a subtle distinction, but taking these distinc- 
tions into account allowed the program to modestly improve its performance. 

Besides the gain in performance yielded by the TPC version, one might 
argue that the spelling of key names themselves - D!> major versus Ctt ma- 
jor - is musically important. The program tested earlier was incapable of 
making such distinctions and made numerous mistakes (although it was 
not penalized for these). The TPC-based model performs significantly bet- 
ter in this regard, usually choosing the correct spelling for each key. 

An Alternative Approach to Modulation 

The preceding algorithm adopts a simple approach to modulation that 
proves to be highly effective: impose a penalty for changing keys, which is 
balanced with the key-profile scores. Another possible way of incorporat- 
ing modulation into the key-profile approach has been proposed by David 
Huron and Richard Parncutt (1993). Huron and Parncutt suggest that the 
key at each moment in a piece is determined by an input vector of all the 
pitch events so far in the piece, weighted according to their recency. An 
exponential curve is used for this purpose. If the half-life of the curve is 1 s, 
then events 2 s ago will weigh half as much in the input vector as events 1 
s ago.12 (Huron and Parncutt's algorithm also involves weighting each pitch 
event according to its psychoacoustical salience; I will not consider this 
aspect of their model here.) Huron and Parncutt compared the results of 
this model with experimental data from studies by Krumhansl and Kessler 
(1982) and Brown (1988) in which subjects judged the key of musical se- 
quences. In Krumhansl and Kessler's study, subjects heard chord progres- 
sions and judged the stability of different pitches at different points in the 
progression; these judgments were compared with key profiles to deter- 
mine the perceived key. In Brown's study, subjects heard monophonie pitch 
sequences and indicated the key directly at the end; the same pitches were 
presented in different orderings, to determine the effect of order on key 
judgments. The Huron-Parncutt model performed well at predicting the 
data from Krumhansl's study; it fared less well with Brown's data. 

An implementation of the Huron-Parncutt algorithm was devised, in 
order to test it on the Kostka-Payne corpus. A number of decisions had to 
be made. It seemed sensible to use the modified version of the key-profile 
values, because these appear to perform better than Krumhansl's original 
ones. Exactly the same input format was used as in my test; the same seg- 
ments were used in this test as well. For each segment, a local input vector 

12. The time point of each event was determined by its onset; duration was not consid- 
ered. 
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was calculated. These input vectors were flat, as in my algorithm; each 
value was either 1 if the corresponding pitch class was present in the seg- 
ment or 0 if it was not. For each segment, a "global input vector" was then 
generated; this consisted of the sum of all the local input vectors for all the 
segments up to and including that segment, with each local vector weighted 
according to the exponential decay function. The key chosen for each seg- 
ment depended on the best key-profile match for that segment's global in- 
put vector. The use of segments here requires some explanation. Unlike my 
algorithm, the Huron-Parncutt algorithm does not actually require any seg- 
mentation of the input; it could conceivably make very fine grained key 
judgments. For example, the piece could be divided into very narrow time 
slices, say a tenth of a second, and a new key judgment could be made after 
each time slice, with each prior segment weighted under the exponential 
curve. (In this way, the duration of events would also be taken into ac- 
count.) In the case of my algorithm, however, using segments and calculat- 
ing flat input vectors for each segment was found to work better than count- 
ing each note and duration individually; as noted earlier, when notes are 
counted individually, a repeated note can have too strong an effect. It seemed 
likely that the same would be true for the Huron-Parncutt algorithm. 

The algorithm was tested with various different half-life values to find 
the one yielding the best performance. This proved to be a value of 4.0 s. 
With this value, the algorithm scored correctly on 628.5 out of 896 seg- 
ments, a rate of 70.1 %.13 Inspection of the results suggest that there are 
two reasons why this system performs less well than the preference rule 
system proposed earlier. One reason is its inability to backtrack. Very of- 
ten, the segment where a key change occurs is not obviously in the new 
key; it is only, perhaps, a few seconds later that one realizes that a modula- 
tion has occurred, and what the new key is. Another problem with the 
algorithm is that it has no real defense against rapid modulation; with a 
half-life of 4 s, the algorithm produced 169 modulations (Kostka's analyses 
contained 40 modulations). Raising the half-life value reduced the number 
of modulations, but also reduced the level of performance. 

While the exponential decay model performs disappointingly on the 
Kostka-Payne corpus, it may be of interest in other ways. It may well be a 
better model of actual listening than the preference rule algorithm - for 
nonexperts at least and perhaps for experts as well. The degree to which 
tonal backtracking takes place in actual listening is not clear. It might also 
be possible to improve the decay model to make it more capable of expert 
judgments. For example, the input vectors could be weighted with subse- 

13. The model was also tested using weighted, rather than flat, input vectors (so that the 
value for a pitch class in a segment's local input vector was given by the total duration of 
events of that pitch class in the segment). The level of performance was almost identical to 
the flat-input version; with a half-life of 4.0 s, it yielded a score of 69.8% correct. 



14. Thanks are due to Paul von Hippel, Carol Krumhansl, and two anonymous review- 
ers for their helpful comments on this paper. 
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quent pitches as well as previous ones, perhaps allowing the system to handle 
modulations more effectively. However, I will not pursue this further here. 

Conclusions 

I have argued here that the key-profile model can provide a successful 
solution to the key-finding problem. Although I have proposed some modi- 
fications in Krumhansl and Schmuckler's original model, the basic idea 
behind their model proves to be a very useful and powerful one. I have 
cited several other factors - spelling, harmony, and the "primacy" factor 
proposed by Longuet-Higgins and Steedman - which appear to play a role 
in key finding; however, these factors appear to be needed rather rarely. Of 
course, to say that a kind of information is not necessary for key finding 
does not mean that it is not used for key finding. This recalls a point made 
earlier: the fact that one has a model that performs well at a task per- 
formed by humans does not prove that humans do it the same way. Al- 
though it is true that a key-profile model can perform key finding pretty 
well without harmony, it might also prove to be the case that a harmony- 
based model can perform the task well without key-profile information. 
The same applies to other kinds of information. Several authors have sug- 
gested that some kind of pitch salience factors might be involved in key 
finding, so that not all pitch events carry equal weight in the key-determi- 
nation process. Krumhansl (1990, pp. 108-109)suggests that accented or 
metrically strong events might be given greater weight; Huron and Parncutt 
(1993, pp. 158-160) point to psychoacoustical salience as a factor - for 
example, the fact that outer-voice pitches tend to be more salient than in- 
ner-voice ones. Longuet-Higgins and Steedman's "first-note" rule is in a 
way a kind of salience consideration as well. Although the current study 
has found few cases in which such information is required, that does not 
mean that the information is not used psychologically. To put it another 
way, it may be that key information is often contained in musical stimuli in 
more than one way. If this proves to be the case, then other kinds of evi- 
dence will have to be considered - experimental psychological data, for 
example - in deciding which factors truly are "key" in how key finding is 
actually done.14 
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