
10 Computer Music Journal

Computer Music Journal, 23:1, pp. 10–27, Spring 1999
© 1999 Massachusetts Institute of Technology.

Introduction

Computational music analysis is an important
project for a number of reasons. From a psycho-
logical point of view, systems for performing mu-
sical processes may shed light on how human
listeners perform such processes, just as computa-
tional work in vision and problem solving has led
to important insights in those domains. While re-
cent research has revealed much about listeners’
mental representations of music (Dowling and
Harwood 1986; Butler 1992), there is much to be
learned in this area. There are practical applica-
tions to automatic music analysis as well. Many
kinds of music-related tasks that computers might
perform—for example, producing a score from raw
pitch data, detecting probable errors in a score,
searching a melodic database for matches to a
query, generating an accompaniment for a melody,
or performing statistical analysis of musical styles
for the purposes of automatic composition—re-
quire an ability to process music and extract vari-
ous kinds of structure and information from it.
Extracting this information proves to be a highly
complex task.

In this article, we present a computational sys-
tem for analyzing metrical and harmonic structure.
The system is designed for Western tonal music,
particularly art music of the “common-practice”
period. As input, the program takes a list of notes
with pitch, on-time, and off-time; it produces a rep-
resentation showing a metrical structure (consist-
ing of several levels of beats) and a harmonic

structure (consisting of a partitioning of the piece
into segments, each labeled with a root). (There are
important reasons for combining the metrical and
harmonic systems into a single program, which we
will explain.) Our approach is based on preference
rules. Preference rules are criteria for selecting an
analysis of a piece out of many possible ones. The
preferred analysis is the one which, on balance,
best satisfies the rules. The current article presents
an overview of our project; more information is
available at the World Wide Web site http://
www.link.cs.cmu.edu/music-analysis. The com-
plete source code for our system (written in C) is
available at this site, and we also provide a number
of sample input files and a utility program for gen-
erating input files from MIDI files. The site also
contains information about recent work that we
were unable to include here.

Both metrical analysis and harmonic analysis
have been addressed before in computational music
studies. The problem of harmonic analysis has re-
ceived surprisingly little attention. The few at-
tempts that have been made (notably by Winograd
[1968] and Maxwell [1992]) have had limited suc-
cess. The most important limitation is that they
are unable to handle cases where the notes of a
chord are not stated fully and simultaneously, such
as arpeggiations, incomplete chords, and unaccom-
panied melodies. They also require information
that is not generally present in listening, such as
key signatures, pitch spellings, and rhythmic val-
ues. (Temperley [1997] has reviewed this work.)
More work has been done on metrical analysis
(Longuet-Higgins and Steedman 1971; Steedman
1977; Chafe, Mont-Reynaud, and Rush 1982; Povel
and Essens 1985; Allen and Dannenberg 1990; Lee

Modeling Meter and
Harmony: A Preference-
Rule Approach

David Temperley* and Daniel Sleator†

*School of Music
Weigel Hall
Ohio State University
Columbus, Ohio 43201, USA
temperley.1@osu.edu
†School of Computer Science
Carnegie-Mellon University
5000 Forbes Avenue
Pittsburgh, Pennsylvania 15213, USA
sleator+@cs.cmu.edu

http://www.link.cs.cmu.edu/music-analysis.
http://www.link.cs.cmu.edu/music-analysis.


Temperley and Sleator 11

1991; Rosenthal 1992; Parncutt 1994). In this area
too, previous systems have been limited in both the
inputs they handle, and the representations they
produce. Some can handle only quantized inputs
(Longuet-Higgins and Steedman 1971; Steedman
1977; Povel and Essens 1985; Lee 1991; Parncutt
1994); some consider only rhythmic information,
without considering pitch in any way (Longuet-
Higgins and Steedman 1971; Povel and Essens 1985;
Allen and Dannenberg 1990; Lee 1991; Parncutt
1994); some produce only a single level of beats
(Povel and Essens 1985; Parncutt 1994); and all of
these systems are limited to monophonic music.
The current system attempts to overcome these
limitations.

Quite apart from the issue of performance, the
system presented here differs from most other har-
monic and metrical analysis systems in an impor-
tant way. For the most part, the systems mentioned
above are not preference-rule systems. Rather, they
might better be called procedural systems: they are
best described in terms of the procedure they fol-
low, rather than the output they produce. Cer-
tainly, these systems reflect principles about the
kinds of metrical structures that are desirable, like
having strong beats on long notes. However, it is
not usually possible to describe the output of the
system as one that satisfies some set of criteria.
(Two exceptions are the systems of Povel and
Essens and Parncutt, which could be viewed as
simple preference-rule systems.) With preference-
rule systems, by contrast, the output can be de-
scribed simply as the one that best satisfies the
preference rules. To put it another way, the prefer-
ence rules themselves provide a kind of high-level
description of what the system is doing, which is
not usually available in procedural systems.

The conceptual simplicity of preference-rule sys-
tems is one of their attractive features. However,
they present a computational problem: how to find
the optimal analysis of a piece out of a huge num-
ber of possibilities. We will propose a solution to
this problem that seems to have quite broad appli-
cability to musical preference-rule systems.

We begin by describing our two preference-rule
systems. With each system, we begin with an in-
formal description, and then explain the way it is

formalized and implemented. We also discuss the
procedure we have devised for solving the search
problem posed above. We examine several ex-
amples of the program’s output, pointing to some
virtues and failings. Finally, we consider some pos-
sible directions for improvement, and discuss
some important general advantages of the prefer-
ence-rule approach.

Meter: The GTTM Model

Before we begin, a word is needed about the input
to the program. The input we assume is a “note
list,” giving the pitch (in integer notation, middle
C = 60) and the on-time and off-time (in millisec-
onds) of a series of notes. It is perhaps easiest to
think of this as a two-dimensional representation
with pitch on one axis and time on the other,
similar to a piano roll. Each event is represented as
a line segment on this plane, the length of the seg-
ment corresponding to the note’s duration. The
program requires no information beyond this: in
particular, it does not require other information
commonly available in scores, such as bar lines,
key signatures, rhythmic notation, and the spell-
ings of pitches.

While our approach to meter builds on various
earlier attempts, it is most closely related to the
theory of Lerdahl and Jackendoff, as presented in A
Generative Theory of Tonal Music (hereafter
called GTTM) (1983). Lerdahl and Jackendoff pro-
pose a theory of meter, stated as a set of well-
formedness (or hard-and-fast) rules and preference
rules. The preference rules in GTTM are stated in-
formally, and the authors do not discuss how they
might be formalized or implemented. Lerdahl and
Jackendoff propose that a metrical structure con-
sists of several levels of equally spaced beats
(where beats are points in time, not necessarily
events). Every second or third beat at one level is a
beat at the next level up. (By convention, the level
with the fastest beats is called the lowest level.) In
music notation, the time signature of a piece usu-
ally indicates several levels of the metrical struc-
ture. For example, a piece in 6/8 time has one level
of eighth-note beats; every third beat at that level
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forms a dotted-quarter level of beats; and every
second beat at that level forms a dotted-half (or
“one-measure”) level. In addition, there may also
be one or two levels above the measure, so-called
hypermetrical levels.

Even assuming that a metrical structure must
involve several levels of equally spaced beats, one
must still determine the duple or triple relation-
ships between levels, the tempo (the time inter-
vals between beats), and the placing of the beats
relative to the music. For this purpose, Lerdahl
and Jackendoff posit a set of metrical preference
rules, stating the criteria whereby listeners infer
the correct structure. Consider Figure 1, the tradi-
tional American melody “Oh Susannah.” The cor-
rect metrical structure is shown above the staff.
(The metrical and harmonic analysis shown here
is the one produced by our program, with one dif-
ference that we will explain.) The most important
rule is that beats (especially higher-level, or

“strong” beats) should whenever possible coincide
with the onsets of events. Second, there is a prefer-
ence for strong beats to coincide with longer
events. In “Oh Susannah,” for example, this favors
placing quarter-note beats on even-numbered
eighth-note beats (the second, fourth, and so on),
since this aligns them with the dotted eighth
notes. Similarly, this rule favors placing half-note
beats on odd-numbered quarter notes, since this
aligns the long note in measure 4 with a half-note
beat. We state these rules as follows (our wording
differs slightly from that in GTTM):

Event rule—prefer a structure that aligns
beats with event onsets
Length rule—prefer a structure that aligns
strong beats with onsets of longer events

Note that the preferred metrical structure is the
one that is preferred on balance; it may not be pre-
ferred at every moment of the piece. For example,

Figure 1. “Oh Susannah,”
showing the correct metri-
cal and harmonic struc-
ture. Each row of dots
indicates a level of the
metrical structure; each
dot indicates a beat on

the onset of the note be-
low. Each chord symbol
represents a chord span,
beginning on the note be-
low and extending to the
beginning of the following
chord span.
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the second A in measure 10 is a long note on a
fairly weak beat, thus violating the length rule, but
on balance, this structure is still the preferred one.

When we turn to polyphonic music, several
complications arise. Consider Figure 2, the open-
ing of Mozart’s Sonata, K. 332. The correct metri-
cal structure is indicated by the time signature;
why is this the perceived structure? Clearly, the
eighth-note level is determined by the event rule.
The quarter-note level could also be explained by
the event rule: on certain eighth-note beats we
have two event onsets, not just one. This brings up
an important point about the event rule: the more
event onsets at a time point, the better a beat loca-
tion it is. Regarding the dotted-half-note level, one
might suppose that it was due to the long notes in
the right hand. This raises the question of what is
meant by the “length” of an event. The actual
length of events is available in the input, and this
could be used. However, this is problematic. In the
Mozart excerpt, the long notes in the right hand
would probably still seem long (and hence good
candidates for strong beats) even if they were
played staccato. Alternatively, one might assume
that the length of a note corresponds to its inter-
onset interval (IOI), which is the time interval be-
tween the note’s onset and the onset of the
following note. (This is the approach taken by
most previous meter-finding programs.) This ap-
proach works fairly well in monophonic music (al-

though even there it encounters problems, as we
will show); however, it is totally unworkable in
polyphonic music. In the Mozart piece, the IOI of
the first right-hand event is only one eighth note:
it is followed immediately by a note in the left
hand. Intuitively, what we want is the IOI of a
note within that line of the texture: we call this
the registral IOI. However, separating the events
of a texture into lines is a highly complex task
that we will not address here. Our solution to this
problem, which is crude but fairly effective, is to
define the registral IOI of an event as the inter-on-
set interval to the next event within a certain
range of pitch: we adopt the value of nine
semitones. However, it sometimes proves useful
to use duration as well. In Figure 3, the fact that
the melody note is held makes it clear that it is in
a separate line from the lower notes, and hence is
truly long, despite its short registral IOI. Taking
all this into account, we propose a measure of an
event’s length that is used for the purpose of the
length rule: the length of a note is the maximum
of its duration and its registral IOI.

Lerdahl and Jackendoff’s theory neglects one ex-
tremely important aspect of meter. The GTTM
rules state that beats at the “tactus” level and im-
mediately higher levels must be exactly evenly
spaced. The tactus is the most salient level of
meter, usually corresponding to the main “beat”
of the music in colloquial terms. In actual perfor-
mance, however, beats are of course not exactly
evenly spaced at any level. There may be deliber-
ate fluctuations in timing, as well as errors and
imperfections. This is a crucial point, because it
means that we cannot simply infer the metrical
structure at the beginning of a piece and extrapo-
late it metronomically through the rest of the
piece (even if we had the ability to do that): we

Figure 2. Mozart’s Sonata,
K. 332, first movement,
measures 1–5.

Figure 3. A case where du-
ration affects the perceived
length of notes.

Figure 2

Figure 3
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must continuously adjust the meter to fit the mu-
sic that is heard. (There is no doubt that listeners
can and do make these adjustments; in general, we
have little difficulty relocating the beat after a
fermata or ritard, or even a complete change in
meter or tempo.) In principle, accommodating this
into Lerdahl and Jackendoff’s theory is straightfor-
ward: we simply make the requirement for regu-
larity of beats at each level into a preference rule,
rather than a well-formedness (hard-and-fast) rule.
We state this rule as follows:

Regularity rule—prefer beats at each level to
be maximally evenly spaced

Maximizing the regularity of each level thus be-
comes a flexible constraint, to be balanced against
the other preference rules.

The regularity rule brings up an important fea-
ture of our system. In the past, computational
analysis of rhythm has generally been divided into
two problems. One is quantization: the rounding
off of durations and time points in a piece to mul-
tiples of a common beat (see, for example, Desain
and Honing 1992). The other is metrical analysis:
imposing higher levels of beats on an existing
lower level. Models that assume a quantized input
(such as Lerdahl and Jackendoff’s) are really only
addressing the second problem. However, an im-
portant recent realization of music artificial intel-
ligence has been that quantization and meter
finding are really part of the same process. In im-
posing a low level of beats on a piece of music,
marking the onsets of events, one is in effect iden-
tifying their position and duration in terms of inte-
ger values of those beats. Most notably, Rosenthal
(1992) proposed a model that accomplishes both
low-level quantization and medium-level meter
finding. Our system is similar in this respect, per-
forming both quantization and meter finding in a
single process.

The three rules discussed above—the event rule,
the length rule, and the regularity rule—form the
core of the meter program. It remains to be ex-
plained how they are formalized and implemented.
The basic idea is straightforward. The system must
consider all possible analyses of a piece, where an
analysis is simply a well-formed metrical struc-

ture, consisting of several rows of beats, as out-
lined above. Each metrical preference rule assigns a
numerical score to each analysis, indicating how
well the analysis satisfies that rule. The preferred
analysis is the one with the highest total score.

For now, let us consider the simpler situation of
deriving a single row of beats whose time intervals
may vary over a broad range, say 400–1,600 msec,
the typical range for the tactus level. We will re-
turn later to the problem of adding other levels.
An analysis, then, is a row of beats imposed on a
given piece. The input representation is first quan-
tized into very short segments of 35 msec, which
we call pips (the value of 35 msec was simply
found to be optimal through trial and error). Every
event onset and offset is rounded to the nearest
pip; beats also may occur only at the start of a pip.

An analysis can then be evaluated in the follow-
ing way. Each pip containing a beat is given a nu-
merical score indicating how many events have
onsets at that point. This score is also weighted by
the length of the events starting there. In sum-
ming these note scores for all the pips, we have a
numerical representation of how well the analysis
satisfies the event and length rules. Each pip con-
taining a beat is also given a score indicating how
evenly spaced it is in the context of the previous
beats in that analysis. There are various ways that
this could be quantified, but we have found a very
simple method that works well: the regularity of a
beat Bn is simply given by the absolute difference
between the interval between Bn and Bn–1 and that
between Bn–1 and Bn–2. This beat-interval score
therefore acts as a penalty: a representation is pre-
ferred in which the beat-interval scores are mini-
mized. The preferred tactus level is the one whose
total note score and (negative) beat-interval score
is highest. One complication here is that simply
defining the note score for a beat level as the sum
of the note scores for all its beats gives an advan-
tage to analyses with more beats. Thus, we weight
the note score of each beat by the square root of its
beat interval (the interval to the previous beat).
The square root was chosen simply because it is a
convenient function whose growth rate is between
a constant (which would be too small) and a linear
function (which would be too large).
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It is because of the beat-interval scores that the
scores must be computed in terms of entire analy-
ses. The best beat location within (for example) a 1-
sec segment depends in part on the beat-interval
penalty for different pips, but this penalty depends
on the location of previous beats, which in turn de-
pends on their beat-interval scores (and their note
scores), and so on. In theory, then, all possible
analyses must be considered to be sure of finding
the highest-scoring one overall. However, the num-
ber of possible analyses increases exponentially
with the number of pips in the piece. There is there-
fore a search problem to be solved of finding the cor-
rect analysis without actually generating them all;
we discuss later how we solve this problem.

The preferred tactus level for a piece, then, is
the one that best satisfies the three preference
rules, quantified in the way just described. It re-
mains to be explained how the other levels are de-
rived. The program begins with the tactus level; it
then generates two levels above the tactus and two
below. Five levels prove to be sufficient for the
great majority of pieces. We have adopted the con-
vention of calling the tactus level 2, the upper lev-
els 3 and 4, and the lower levels 1 and 0. The
generation of the upper levels is straightforward.
Level 3 is generated in exactly the same way as
level 2, with the added stipulation that every beat
at level 3 must also be a beat at level 2, and ex-
actly one or two level-2 beats must elapse between
each pair of level-3 beats. Level 4 is then generated
from level 3 in the same manner. There is no ex-
plicit requirement for regularity in terms of the re-
lationship between levels (duple or triple), but this
tends to emerge naturally, since there is pressure
on each level to be regular in itself. The lower lev-
els are slightly more complicated. At level 1, a
possible duple or triple division is generated for
each level-2 beat. The best choice between duple
and triple, and the exact placing of the lower-level
beats within the tactus beat, is determined using
the same preference rules described above. How-
ever, there is also a penalty for switching from
duple to triple from one tactus beat to another. In
this way, other things being equal, there is a pref-
erence for maintaining either duple or triple divi-
sion once it is established.

A Model of Harmony

Another essential aspect of musical structure is
harmony. Elsewhere one of us has proposed a
model for harmonic analysis (Temperley 1997);
this is the basis for the system we present here.
Like the metrical program, the main input to the
harmonic program is simply a “piano roll”: a list
of events, with a time and duration for each event
(although metrical information is also required, as
we explain). The program produces a representa-
tion of segments, which we call chord spans, la-
beled with roots. This is somewhat different from
conventional harmonic analysis or “Roman-nu-
meral analysis”: whereas a Roman-numeral analy-
sis represents each root relative to the current key,
the current program simply labels roots in abso-
lute terms.

The model we employ is, again, a preference-
rule system, giving a set of criteria for choosing
the preferred analysis out of all the possible ones.
A possible harmonic analysis is simply a complete
segmentation of the piece, where each segment is
labeled with a root. Again, “Oh Susannah” pro-
vides a simple illustration of the program’s rules.
What we would consider the correct analysis is in-
dicated by the root symbols below the staff. (Un-
like metrical structure—which is usually
indicated by the score of a piece—the correct har-
monic structure for a piece is to some extent a
matter of opinion. While there are certainly cases
where people disagree about the correct analysis
for a piece, there is a great deal of agreement as
well.) Assuming the first segment consists of the
first three measures (plus the opening pickup),
why does C seem like the correct choice of root
here? The most obvious reason is that C, E, and G
are all present, and these are chord tones of C ma-
jor. One question is how we know which notes in
the segment are chord tones, as opposed to orna-
mental tones; we will return to this. But even once
this is known, the chord tones in a segment often
do not uniquely identify a chord. For example,
measures 9–10 contain F and A; these could imply
either an F-major chord or a D-minor chord, al-
though F major seems preferred. To capture such
intuitions, we stipulate that roots are preferred
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that result in certain pitch-root relationships, but
some relationships are preferred to others. We ex-
press this in the following rule:

Compatibility rule—prefer roots that result
in certain pitch-root relationships. The fol-
lowing relationships are preferred, in this or-
der: 1, 5, 3, 3, 7, 5, 9, ornamental

In measures 9–10, a root of F is thus preferred
over D: given the pitches F and A, F results in
pitch-root relationships of 1 and 3, whereas D re-
sults in 5 and 3.

The compatibility rule says that an event that
does not have a chord-tone relationship with the
current root is “ornamental.” However, not just
any event can be ornamental: some events are bet-
ter ornamental tones than others. If one considers
the most common types of ornamental tones—
passing tones, neighbor tones, suspensions, and ap-
poggiaturas—one finds that they all share a
common characteristic: they are closely followed
by another event a half-step or whole-step away in
pitch. In addition, we have found that there is a
preference for ornamental tones to be metrically
weak, although sometimes they are metrically
strong. (This of course requires access to metrical
structure; we will return to this in a moment.) In a
scale passage, for example, the metrically strong
notes are more likely to be heard as chord tones.
We express these intuitions as follows:

Ornamental dissonance rule—in labeling
events as ornamental, prefer events that are
(1) closely followed by another event a half-
step or whole-step away, and (2) metrically
weak

According to this rule, the D in the pickup to
measure 1, the A at the end of measure 1, and the
D at the end of measure 2 are all good ornamental
dissonances, since all are closely followed
stepwise. However, the G in measure 2 (for ex-
ample) is not closely followed stepwise. If this
event were treated as ornamental—that is, if a root

were chosen for that segment of which G was not
a chord tone—the ornamental dissonance rule
would be severely violated.

Now consider measure 4. According to the
compatibility rule, D would be the preferred root
for this segment (since the root D results in a
pitch-root relationship of 1 with pitch D). Why is
G more preferred? Intuitively, G is a “closer” har-
mony to C than D is, and should therefore be pre-
ferred in such cases. Here we introduce a simple
spatial model: the line of fifths, similar to the
circle of fifths, but extending infinitely in either
direction as shown in Figure 4. Choosing a root
for a segment is therefore a matter of mapping it
onto a point on the line of fifths. Given this
model, we can say that there is a preference for
choosing roots so that roots of nearby segments
are close together on the line. This leads to a
third rule:

Harmonic variance rule—prefer roots such
that roots of nearby chord spans are close to-
gether on the line of fifths

The line of fifths raises the issue of spelling.
Much work in music theory (especially atonal
theory) and music cognition has assumed that
pitches are categorized into “pitch classes,” such
that pitches one or more octave apart are members
of the same class. However, in conventional tonal
theory and music notation, distinctions are made
between different spellings of the same pitch; e.g.,
A  versus G . We call these tonal pitch classes
(TPCs), as opposed to the twelve neutral pitch
classes of atonal theory. It is our view that these
spelling distinctions are an important aspect of
tonal harmony, and must be represented. (For a
discussion of this issue, see Temperley 1997.) This
adds a further task for the program: as well as di-
viding the piece into segments labeled with roots,
it must also choose a spelling label for each pitch
event, hence mapping it onto the line of fifths.
The main criterion for doing this is a simple one,
analogous to the harmonic variance rule above:

Figure 4. The line of
fifths.



Temperley and Sleator 17

Pitch-variance rule—prefer spellings for pitch
events such that nearby events are close to-
gether on the line of fifths

The representation of pitch spellings—which we
call the TPC representation—is closely integrated
with the harmonic representation. In the first
place, the compatibility rule, which stipulates the
preferred pitch-root relationships, refers to tonal
pitch classes, not neutral ones. That is, if a seg-
ment contains A -C-E , the preferred root for that
segment is A , not G . However, the program seeks
the overall representation—of both roots and
pitches—that maximally satisfies all the rules, the
harmonic rules and the pitch-variance rule. In
some cases, harmonic considerations may force a
pitch spelling that would be less preferred given
the pitch-variance rule alone. In this way, har-
monic considerations “feed back” to influence
pitch spelling.

A final harmonic rule concerns the division of
the piece into chord spans. We have generally as-
sumed chord spans of one measure or more, but
why do we assume this? Alternatively, one could
posit a separate chord span for each note. In gen-
eral, there seems to be a preference for longer chord
spans, or at least an avoidance of very short ones.
However, there is another principle involved as
well. Consider the G segment in measure 4. Why
not begin this chord span two notes earlier, on the
previous D (thus making the C a neighbor tone)?
The reason is that there is a preference for starting
chord spans on strong beats of the metrical struc-
ture. This has the added effect of avoiding very
short chord spans; since strong beats are never very
close together, if a chord span is very short, either
that chord span or the following one must begin on
a weak beat. We express this as follows:

Strong-beat rule—prefer to start chord spans
on strong beats

This important rule explains the motivation for
incorporating the harmonic and metrical programs
into a single program. Since harmonic analysis re-
quires metrical information, it is useful to be able
to use the output of the metrical program as input
to the harmonic program. There is a problem here,

however, as metrical analysis sometimes requires
harmonic information. We will return to this issue
below.

The implementation approach we take with the
harmonic program is similar to that taken with
the metrical program. The harmonic program con-
siders all possible analyses of the entire piece; in
this case, a possible analysis is simply a complete
segmentation of the piece into chord spans labeled
with roots. (A spelling must also be chosen for
each pitch event. The way this is handled
computationally is rather complex, and is not dis-
cussed here.) Again, we begin by dividing the piece
into short segments. Here we can use the already-
generated metrical structure. Recall that any chord
span beginning on a very weak beat will get an ex-
tremely high penalty. It seems intuitively plau-
sible to exclude altogether chord-span boundaries
that do not coincide with beats at all. Therefore,
we divide the piece into segments based on the
lowest level of the metrical structure (usually on
the order of 100–300 msec), and stipulate that
chord-span boundaries can only occur at these seg-
ment boundaries. A root is chosen for each seg-
ment, and a chord span then emerges as any group
of contiguous segments with the same root. (Since
the number of possible roots is infinite, we arbi-
trarily limit it to a range of 48 roots on the line of
fifths, and stipulate that the first root must be in
the range from F  to D .)

In evaluating a harmonic analysis, each prefer-
ence rule assigns a numerical score to each seg-
ment, indicating how well it satisfies that rule.
Beginning with the compatibility rule, we give the
segment a positive score for each event (or part of
an event) in the segment that has a chord-tone re-
lationship with the root given by the analysis;
more preferred relationships result in higher
scores. Regarding ornamental tones, each event
that is not a chord tone of the root receives a pen-
alty, depending on how “good” it is as an orna-
mental tone, that is, how closely followed it is by
the next event a whole step or half step away, and
how metrically weak it is; better ornamental tones
receive lower penalties. Turning to the strong-beat
rule, we assign a penalty to each segment whose
root is different from the previous segment, de-
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pending on the strength of the beat at that point;
weaker beats result in higher penalties. The har-
monic variance rule is slightly more complex. For
each segment, we take the mean position on the
line of fifths of all previous roots in the piece,
weighted for recency, so that more recent seg-
ments affect it more. We then look at the distance
of the current segment’s root from this “center of
gravity.” This provides a measure of how close the
current segment’s root is to previous roots. We
then assign each segment a penalty based on this
value. (Incidentally, one advantage of using the
line of fifths as a space for roots and pitch
classes—rather than a circular space, for ex-
ample—is that it permits this easy way of calculat-
ing spatial proximity.)

If only the compatibility rule and the ornamen-
tal dissonance rule were involved, finding the pre-
ferred analysis would be easy, since the root for
each segment could simply be chosen in isolation.
What makes it difficult are the variance and
strong-beat rules. Because of these, the preferred
root for a segment depends on its context. As with
the metrical program, then, there is a search prob-
lem to be solved of finding the highest-scoring
analysis out of all possible ones.

The Search Procedure

Our algorithms for finding optimal solutions to
the search problems described above are based on
dynamic programming (Cormen, Leiserson, and
Rivest 1990). The procedures for the harmonic and
meter preference-rule systems are similar, and are
summarized in this section.

We explain our approach using a somewhat sim-
plified example. Imagine a harmonic algorithm
that uses only two of the rules discussed here: the
compatibility rule, as proposed above, and a “no-
change” rule, which simply penalizes all harmonic
changes (similar to the strong-beat rule, except dis-
regarding meter). Assume also, for simplicity’s
sake, that there are only twelve roots. Now imag-
ine a piece consisting of a series of segments. Each
segment has a compatibility score for each root,
reflecting how compatible the pitches of the seg-

ment are with the root. We can represent these
scores in a table, as shown in Figure 5. The num-
bers in each cell represent the compatibility scores
for each segment with each root. (Ignore the num-
bers in parentheses for the moment.) Let us as-
sume that the no-change rule imposes a penalty of
2 points. Each analysis is thus a path along the
table, with one step in each column; each analysis
receives a compatibility score, which is the total
of the scores in the squares it steps in, minus 2
points for each move from one row to another.
The object is to find the highest-scoring path.

Let us begin by considering just the first two
segments, S1

 and S2. We calculate the best analysis
of these two segments by simply considering all
144 possibilities: each root for S1, combined with
each root for S2. (The best analysis is C-G, with a
score of 5 + 6 – 2 = 9.) Now we proceed to the third
segment, S3. The score for a three-segment analy-
sis can be viewed as the score for the first two seg-
ments (already calculated), plus the compatibility
score and no-change penalty (if any) for the third
segment. It might appear that we have to calculate
scores for all three-segment analyses to find the
best one. However, there is a major shortcut we
can take here. Consider the analyses of S1–S2 that
end in root F. We have already calculated the
scores for these, and found that F-F scores the
highest. When adding on a third segment, then, we
need only consider the highest scoring of the

Figure 5. A hypothetical
search table for the sim-
plified harmonic algo-
rithm.

Segment
1 2 3 4 5

Root
C 5 3 (8,C) 1 (9,C) 1 (12,G) 0 (15,E)
C# 0 1 (4,C) 0 (7,G) 0 (11,G) 2 (17,E)
D 2 0 (3,C) 0 (7,G) 2 (13,G) 0 (15,E)
E 0 4 (7,C) 0 (7,G) 0 (11,G) 0 (15,E)
E 1 0 (3,C) 5 (12,G) 5 (17,E) 3 (20,E)
F 4 3 (7,F) 2 (9,F) 1 (12,G) 1 (16,E)
F# 0 0 (3,C) 0 (7,G) 0 (11,G) 0 (15,E)
G 3 6 (9,C) 4 (13,G) 2 (15,G) 3 (18,E)
A 1 0 (3,C) 2 (9,G) 3 (14,G) 0 (15,E)
A 1 1 (4,C) 2 (9,G) 3 (14,G) 6 (21,E)
B 0 1 (4,C) 1 (8,G) 0 (11,G) 2 (17,E)
B 1 0 (3,C) 2 (9,G) 3 (14,G) 0 (15,E)
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analyses ending in each root at S2. There is no rea-
son that any of the others would ever be preferred.
S3 only cares about what the root was in the previ-
ous segment; anything prior to that is irrelevant.
Thus we proceed as follows. For each root at S2 we
record the score for the highest-scoring analysis
ending at that root, along with the S1 root that the
analysis entails. These “best-so-far” scores, along
with the best previous root, are shown in paren-
theses in the table. At S3, we consider each root at
S3 combined with each best-so-far analysis ending
at each root at S2; for each root at S3 we choose a
new best-so-far analysis, and record the score and
the S2 root it entails. We repeat this process
through the entire piece. In this way, each square
in each column points back to a square in the pre-
vious column. When we get to the end of the
piece, we look at the best-so-far scores for the
roots in the final segment, and choose the highest
score. By tracing this analysis back through the
table, we can then reconstruct the highest-scoring
possible analysis for the entire piece. In this case,
it is C-G-E-E-A.

At any point in a piece, one of the roots will
have the highest-scoring best-so-far analysis, and
that will represent the preferred analysis at that
point. For example, at S3 the preferred root is G.
But consider S4; here the preferred root is E, and it
points back to a root of E at S3. In this way, the
system naturally handles the “garden-path” effect:
the phenomenon of revising one’s initial interpre-
tation of a segment based on what follows.

This is the procedure we use for both the metri-
cal and harmonic programs. With the meter pro-
gram, we can imagine the columns of the table
representing pips. Each pip has a note score; rows
of the table represent beat intervals, i.e., the time
to some previous pip. Consider the simplified
problem of deriving a single beat level. A beat
level is a path through the table, placing beats at
certain locations. (Unlike the example above, a
beat analysis only steps in certain columns of the
table.) There is a penalty for switching rows (i.e.,
beat intervals) from one step to the next. The pre-
ferred analysis is the one that hits the highest note
scores with the fewest and smallest shifts in beat
interval. So the problem becomes that of filling

the entry in the table for a specific pip and beat in-
terval. This is done by looking back to some previ-
ous pip (determined by the beat interval) and
choosing the best beat interval to use at that prior
pip. When evaluating this choice, we have avail-
able the current beat interval and the hypothetical
previous beat interval, so we can assign the appro-
priate beat-interval penalty. Once the end of the
table is reached, the highest score represents the
preferred analysis overall, and this can be traced
back through the table.

Regarding the harmonic program, the simple al-
gorithm described above can handle the compat-
ibility rule, the ornamental dissonance rule, and
the strong-beat rule (which penalizes changes of
harmony, depending on the strength of the beat).
The dynamic programming table at each segment
only needs to be a one-dimensional array; that di-
mension is the choice of root of the segment. To
incorporate the harmonic variance rule and the
pitch-variance rule (determining the spellings of
pitches), things get a lot more complex, and we
end up with a four-dimensional table (rather than
a one-dimensional table) to fill in. Space limita-
tions prevent us from giving the details here.

In practice, the computation described above is
intractable, because the four-dimensional table
gets too large. We handle this by pruning the table
for a given segment immediately after the table for
that segment is constructed. We simply keep only
those elements that are within some constant of
the highest score in the table. We have found a
value for this constant that maintains a reasonable
speed for the system without compromising accu-
racy.

Examples

We have tested the program on a number of pieces
and sections of pieces. These include both quan-
tized files generated from scores (e.g., Finale files),
and unquantized files generated from live perfor-
mances on a MIDI keyboard. Most are pieces from
the common-practice (Bach to Brahms) era, mainly
piano pieces; there are also a number of unaccom-
panied melodies. All of the input files we have
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tested (including those discussed below) are avail-
able at our World Wide Web site. Interested read-
ers can judge the program’s performance for
themselves. In this section, we discuss representa-
tive examples of the program’s output, pointing to
some strengths and weaknesses along the way.
Some of the problems we discuss here have re-
cently been addressed, and are detailed on our
World Wide Web site.

Both the metrical and harmonic programs in-
volve a number of parameters. The weight of each
preference rule relative to the others must be
specified. Many rules also involve internal param-
eters: for example, in the compatibility rule, the
relative preference of different pitch-root relation-
ships. We have simply adjusted these parameters
on a trial-and-error basis. After many tests and ad-
justments, we have found a set of values that
seems to produce generally good results. (The pa-
rameters can easily be adjusted; users of the pro-
gram may wish to experiment with this.)

Our first example is the opening of the Courante
from Bach’s Suite for Violoncello in C Major. The
score is shown in Figure 6; the program’s output is
in Figure 7.

A word of explanation is needed about the for-
mat of the output. Each line of the output repre-

sents a beat at the lowest level of meter. (Recall
that these are treated as indivisible units by the
harmonic program.) At the far left is the time point
at which that unit starts, given in milliseconds.
Remember that these time points have been quan-
tized to pips—units of 35 msec. To the right of that
is a series of xs indicating the levels of beats
present at the time point. In both this example and
the next, the lowest level of meter in the program’s
output is omitted to save space; thus the tactus
level is the second from the left. Next is the root of
the segment shown according to its position on the
line of fifths, and finally the pitches contained in
the segment are listed (by their chosen spellings)
and represented graphically on the line of fifths.
Each pitch event is only indicated by name in the
segment in which it begins. Graphically, each
pitch event is represented by a + symbol in the seg-
ment where it begins, and by a | symbol in subse-
quent segments where it is present. If more than
one event of a particular TPC is present, this is in-
dicated with 2, 3, etc., as appropriate.

The Bach example demonstrates several nice as-
pects of the program. The metrical structure is
correct here, with the possible exception of the
highest level. (The input here is quantized, gener-
ated from a score rather than a live performance.)

Figure 6. Bach’s Suite for
Violoncello No. 3,
Courante, measures 1–12.
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Figure 7. The program’s
output for the Bach pas-
sage shown in Figure 6.
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The meter is somewhat subtle, since (with the ex-
ception of measure 8) there is a note on every
eighth-note beat, and all the notes are the same
length. One important cue seems to be the low
notes at the beginning of measures 2 and 4. The
concept of registral IOI is important here; although
these notes are not actually long, they are not
closely followed by another note in the same regis-
ter, which makes them seem long. Turning to the
harmonic structure, this is (in our opinion) exactly
correct in this passage. In a piece such as this, of
course, it is essential for the program to be able to
handle harmonies in which the notes are stated
successively rather than all at once. Note also the
importance of meter in determining the harmony.
It is this that allows the program to decide where
chord segments begin and end. Without it, for in-
stance, the first G segment might begin two notes
earlier.

Our second example, the opening of the slow
movement of Beethoven’s Op. 13 (“Pathetique” )
Sonata, tests an important aspect of the meter pro-
gram: its ability to handle fluctuations in tempo.
The score is shown in Figure 8, and the program’s
output is in Figure 9.

Unlike the previous example, this example is
from a performance played on a MIDI keyboard. If
one consults the time data in the left column, it
can be seen that the performer (David Temperley)
makes considerable variations in the tempo. For
convenience, the intervals between tactus beats
are shown at the far left; these are not normally
displayed by the program. (The program considers
the tactus to be the sixteenth-note level here; the

eighth-note level would perhaps be a better
choice.) Again, the very lowest level of the metri-
cal structure is not shown in this example, thus
the tactus level is the second from the left. Among
the features of the expressive timing here are a
slight slowing down at the beginnings and endings
of measures; a significant acceleration in the first
three quarters of measure 3 (the mean tactus inter-
val here is 437 msec, as opposed to a mean of 491
msec for the whole passage); and, most notably, a
substantial ritard at the end of measure 4, with
two consecutive beats of 630 msec. Altogether, the
tactus intervals fluctuate between 420–630 msec.
The program is able to handle all of these fluctua-
tions, maintaining the correct metrical structure
throughout. The chords here greatly help the pro-
gram to identify where the strong beats are. Unac-
companied melodies played with rhythmic
freedom often give the program trouble.

The next example, the opening of Schubert’s
Moment Musical #6 (see Figure 10), demonstrates
some strengths and weaknesses of the harmonic
program. In this case, rather than showing the out-
put, we simply show the program’s analysis as
chord symbols on the score; each chord symbol in-
dicates a chord span beginning on the note below.
The analysis of the opening phrase could be im-
proved in several respects. Labeling measure 1 as
D  is odd; it would make more sense to consider
measures 1–2 as part of a single B  chord. Simi-
larly, measure 3 would probably be better labeled
an A  chord with a long appoggiatura. One general
weakness of the program is that it has no knowl-
edge of pedals. Measure 7 would probably best be

Figure 8. Beethoven’s
Sonata, Op. 13
(“Pathetique”) II,
measures 1–5.
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Figure 9. The program’s
output for the Beethoven
passage shown in Figure 8.
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analyzed as a B 7 chord over an E  pedal. Similarly,
measure 15 is an E 7 chord over an A  bass. Being
ignorant of such possibilities, the program must
try something else. Measure 7 is analyzed, reason-
ably, as an E  chord with several appoggiaturas, but
measure 15 is bizarrely labeled as a B  chord. Turn-
ing to the more chromatic harmonies, the program
analyzes the last beat of measure 10 as 1-3- 5- 7
with root G—a “French sixth”—just as it should.
However, the “German sixth” in measures 16–17
is incorrectly labeled as an F  dominant seventh;
moreover, the D is misspelled as an E  (the only
spelling error in this passage). This error brings up
another general failing of the program: it has no
knowledge of voice leading. In measures 16–17,
the fact that the D/E  resolves to an E  would nor-
mally require a D spelling rather than E . The

program’s ignorance of voice leading results in a
fair number of spelling mistakes. For the most
part, however, the pitch-variance rule and the
feedback from harmonic considerations ensure the
correct spellings. For example, the program is able
to correctly identify the B and E in measures 10–12
and the C  and F  in measures 16–18.

The harmonic program has other weaknesses. It
has no knowledge of several common types of or-
namental tones, such as anticipations and escape
tones. It sometimes misses common progressions
like II-V-I, analyzing them in some other strange
way. (As listeners, perhaps we give a “bonus” to
such progressions, due to their familiarity and
structural importance.) The output of the program
is also somewhat unsatisfactory, in that it indi-
cates only the roots of chords, without further in-

Figure 10. Schubert’s
Moment Musical No. 6
(Op. 94), measures 1–20,
showing the program’s
harmonic analysis.
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formation such as mode (major or minor), exten-
sion (triad or seventh), and inversion. We hope to
address these problems.

Further Issues

We have explored several possible improvements
of the metrical program. In its basic form, as de-
scribed above, the program finds and maintains
the correct tactus level on a large majority of
pieces. Its performance on the lower levels is
mostly quite good, although it sometimes misses
notes in rapid scale passages. (We do not want it to
hit every note. Some notes are extrametrical, that
is, notes that would be notated in small note heads
in a score: rolled chords, grace notes, trills,
Chopinesque ornamental flourishes, and so on.
But the program does not always correctly distin-
guish the metrical notes from the extrametrical
ones.) The performance on the upper levels is
weaker, especially on level 4. Frequently the pro-
gram correctly identifies level 4 as duple, which it
usually is, but chooses the incorrect phase (this oc-
casionally happens with level 3 as well). In “Oh
Susannah,” for example (see Figure 1), the program
judges even-numbered measures as metrically
strong at level 4; the same error occurs in the Bach
courante (see Figure 7). The reason for this is clear:
there are often long notes at the ends of phrases,
which makes the program prefer them as strong,
although they are often weak at higher metrical
levels. The real solution to this problem would be
to incorporate what Lerdahl and Jackendoff call
“grouping structure.” Grouping structure is a hier-
archy of segments, with lower-level segments rep-
resenting motives and larger segments
representing phrases and sections. As Lerdahl and
Jackendoff note, grouping affects meter in that
there is a preference to locate strong beats near the
beginning of groups. However, getting a computer
to recognize grouping boundaries proves to be a
very difficult problem, and our preliminary efforts
have been unsuccessful. Instead, we have adopted
a cruder solution. At level 4, the program ignores
the length rule and simply prefers beat locations
that hit the maximum number of event onsets. In

addition, we give a slight bonus at level 4 for plac-
ing a level-4 beat on the first level-3 beat of the
piece (rather than the second or third), thus en-
couraging a strong level-4 beat near the beginning
of the piece. This fix improves performance some-
what, but incorporating grouping structure would
clearly be more satisfactory.

Making use of the harmonic analysis is another
approach to improving the performance of the
metrical program on the higher levels. Consider
the Schumann piece shown in Figure 11; the
tactus here is the quarter note. Our standard met-
rical program will identify the level above the
tactus as triple, but out of phase with the notated
meter (the first quarter note is metrically strong).
Perceptually, the important cue here seems to be
harmony; there are clear chord changes on the sec-
ond and fifth tactus beats, which favors strong
beats there (again, this factor is noted by Lerdahl
and Jackendoff). The idea, then, is to let the har-
monic analysis influence the metrical analysis by
favoring strong beats at changes of harmony. This
presents a serious chicken-and-egg problem, how-
ever, since meter is crucial as input to harmony.
One solution would be to compute everything at
once, optimizing over both the metrical and har-
monic rules, but we have not yet found an effi-
cient way of doing this. Another solution, which
we are currently exploring, is to first run the piece
through the harmonic program, generating a provi-
sional harmonic analysis, then run the output of
that through the meter program, which is now
modified to prefer strong beats at points of har-
monic change, and finally run this output through
the harmonic program again to generate the final
harmonic analysis. This technique can be used to
improve the metrical analysis on a number of
pieces, including the Schumann piece discussed
here. The software included in our distribution
can be run in this manner.

Another factor that is involved in meter is loud-
ness. It would be quite easy to incorporate loud-
ness as a factor in our system; however, we do not
believe it is a major determinant of metrical struc-
ture (see Rosenthal 1992 for discussion). Finally,
the factor of parallelism should be mentioned: the
preference to align metrical levels with patterns of
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repetition. This is undoubtedly a factor in meter,
but we have not yet addressed the major task of in-
corporating it. (For an interesting attempt to
handle parallelism, see Steedman 1977.)

While the main purpose of our system is to gen-
erate satisfactory analyses for pieces, it has some
further interesting features that deserve mention.
One is its handling of real-time listening. As noted
earlier, the system’s analysis of one segment of a
piece—both metrical and harmonic—is the one en-
tailed by the optimal analysis of the piece as a
whole: the analysis of a segment may be affected
by both its prior and subsequent context. Since the
system processes pieces in a left-to-right fashion,
its initial analysis of a segment may be revised
based on what happens afterwards. In this way, the
program may shed light on subtle nuances of lis-
tening, such as the garden-path effect mentioned
earlier. This is an emergent feature of the system
that seems to warrant further exploration.

Another interesting feature of the system relates
to its evaluation of possible analyses. In searching
for the optimal analysis of a piece, the system is in
effect assigning numerical scores to various analy-
ses of the piece and comparing them. When it is
finished, what it produces is not only an optimal
analysis, but a numerical score for that analysis.
More importantly, it produces a series of scores for
segments of the analysis, and for the different
rules, indicating how well each segment satisfies
each rule. In some cases, an analysis of a segment
may be found that satisfies all the rules reasonably
well. In other cases, however, the best analysis
available may be quite low scoring on one or sev-
eral of the rules, and may (in comparison to other
segments) be quite low scoring overall. These

scores may reflect interesting aspects of music and
musical experience. To take just two examples, a
segment featuring wide harmonic leaps on the line
of fifths—a sudden move to a remote harmony—
would score poorly on the harmonic variance rule;
a passage featuring harmonic changes on very weak
beats, or very rapid harmonic motion, would score
poorly on the strong-beat rule. These are devices in
tonal music that can be used to create tension or
instability. In this way, the numerical scores pro-
duced by the program can be seen as indicators of
the degree of tension of musical passages. Like the
garden-path effects observed earlier, nothing spe-
cial has to be done to produce these numerical
scores. They arise naturally as a result of the
system’s search for the optimal analysis.

In several ways, then, preference-rule systems
provide powerful models of aspects of music cog-
nition. While we have focused here on meter and
harmony, it seems that preference-rule systems
would be applicable to other aspects of musical
structure as well. One clear candidate is grouping
structure: the segmentation of a piece into mo-
tives, phrases, and sections. Lerdahl and
Jackendoff offer a preference-rule system for group-
ing in GTTM, and an attempt to implement this
computationally would certainly be worthwhile.
(Another interesting approach to grouping is found
in Tenney and Polansky’s work [1980].) Streaming,
the sorting of events into contrapuntal lines, is an-
other kind of musical structure that appears to
lend itself well to preference-rule modeling. To
our knowledge, this has not been attempted, even
at an informal level. Finally, key structure seems
well suited to a preference-rule approach. Several
models have been presented for how key judg-

Figure 11. Schumann’s
Op. 15 (Kinderscenen),
No. 2.
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ments are made for a passage of music. One well-
known proposal is Krumhansl’s key-profile model
(1990), in which the distribution of pitches in a
passage is matched to an ideal distribution for
each key, with the best match representing the
preferred key. One weakness of Krumhansl’s
model is that it has no mechanism for handling
modulation. We are currently investigating some
possible solutions to this problem.

Perhaps the most attractive feature of the prefer-
ence-rule approach, from the point of view of mod-
eling cognition, is the one we first mentioned: it
provides a high-level way of describing a cognitive
process. In a sense, it is a way of breaking down the
problem. The preference-rule system itself can be
studied, tested, and refined to determine whether it
produces good results without great concern (at
least for the moment) for whether the current real-
ization of the system has cognitive validity. As we
have said, the search procedure we have proposed
has some psychologically attractive features as
well, but the preference-rule system itself could
still be right even if the search procedure turned
out to be completely wrong. Even so, it is still im-
portant to have an implementation, since this al-
lows one to test whether one’s preference-rule
system can really work. Both the successes and
failures of our program lend insight into the factors
that are important in harmonic and metrical analy-
sis. Combined with other kinds of studies, such as
experimental psychological work, we hope that
computational studies such as ours will provide
converging evidence about the mental structures
and processes involved in music cognition.
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