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• ABSTRACT
This paper explores the application of Bayesian probabilistic modeling to issues of

music cognition and music theory. The main concern is with the problem of key­

finding: the process of inferring the key from a pattern of notes. The Bayesian

perspective leads to a simple, elegant, and highly effective model of this process;

the same approach can also be extended to other aspects of music perception,

such as metrical structure and melodic structure. Bayesian modeling also. relates in

interesting ways to a number of other musical issues, including musical tension,

ambiguity, expectation, and the quantitative description of styles and stylistic

differences.

MUSIC AND PROBABILITY

More than forty years ago, Leonard B. Meyer remarked on the fundamental link
between musical style, perception, and probability:

Once a musical style has become part of the habit responsesof composers, performers, and

practiced listeners it may be regarded as a complex system of probabilities. [...] Out of

such internalized probability systems arise the expectations - the tendencies - upon

which musical meaning is built. [oo. T]he probability relationships embodied in a

particular musical style together with the various modes of mental behavior involved

in the perception and understanding of the materials of the style constitute the norms of

the style (1967[1957], pp. 8-9).

To me (and I believe to many others who have read them), these words ring
profoundly true; they seem to capture something essential about the nature of music
and musical communication. Building on these ideas - towards an understanding
of how probabilities shape musical style and perception - would seem to be a
natural enterprise for music cognition and music theory.

Perhaps surprisingly, the probabilistic approach to musical modeling has not
been very widely explored. It saw a flurry of activity in the late 1950's and 1960's,
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and then fell into relative neglect for almost thirty years; very recently, it has enjoyed
something of a resurgence. Most of this work, both from the earlier and later
periods, has involved the Markov chain: a system of probabilities operating between
events in a sequence (see, for example, Youngblood, 1958; Cohen, 1962; Hiller and
Fuller, 1967; Conklin and Winen, 1995; Alamkan et al., 1999; Ponsford et al.,
1999). My concern here is with a rather different approach to probabilistic
modeling, sometimes known as Bayesian modeling. The Bayesian approach, I
will argue, opens the door to a more musically sophisticated investigation of the
probabilistic aspect of music than has been possible before. Whereas Markov models
are fundamentally concerned only with relationships between surface elements (for
example, the probability of one note or chord following another), the Bayesian
approach is inherently concerned with structure, and the relationship between
structure and surface: the way structures constrain surfaces in composition, and the
way surfaces convey structures in perception I.

In this paper I will explore several ways that the Bayesian perspective might
inform and advance the study of music. My main concern will be with "key­
finding", the perceptual process of identifying the key of a piece. I will suggest that
Bayesian modeling offers an elegant and highly effective approach to this problem
- an approach that also applies well to other aspects of music perception, such as
metrical structure and melodic structure. I will also argue for the relevance of
Bayesian modeling to a number of other musical issues, including musical tension,
ambiguity, expectation, and the quantitative description of styles and stylistic
differences.

A BRIEF INTRODUCTION TO BAYESIAN MODEUNG

Communication generally involves the transmission of a message from a producer
to a perceiver. As perceivers, we are often given some kind of surface representation
of a message (what I will simply call a surface); our task is to recover the underlying
content that gave rise to it - the information that the sender was trying to

convey - which I will simply call a structure. The problem is probabilistic in the
sense that a single surface might arise from many different structures. We wish to
know the structure that is most probable, given a particular surface - in the
conventional notation of probability, we need to determine

(1) We should note that it is possible to use Markov models in such a way that does incorporate

structure - 50-Called "hidden Markov models" (HMMs). In an HMM, some elements of the

Markov chain are observable while others are hidden; the hidden elements may correspond to

meaningful structural entities. (In some cases they do not, and simply serve as a way of weighting

relationships between surface elements, as in Ponsford et al., 1999.) Some HMM's are very close

in spirit to Bayesian models; examples in the musical domain include Raphael's automatic

transcription system (2002) and Bod's model of melodic segmentation (2002). Several other

musical studies reflecting, or relating to, the Bayesian perspective will be discussed below.
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argm~tructure P(structure I surface)
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(1)

where "argm~tructure" means the value of "structure" that maximizes the expression
to the right.

The solution to this problem lies in Bayes' rule, a fundamental theorem of
probability. This states that, for any two events A and B, the probability ofA given B
can be computed from the probability of B given A, as well as the overall probabilities
(known as the "prior probabilities") of A and B:

peA I B) = pCB I A) peA)
pCB)

In our terms, for a given surface and a given strucrure:

(2)

p (structure I surface) = p (surface I strucrure) p (strucrurel (3)
p(surface)

To find the strucrure that maximizes the left side of equation 3,we need only find
the structure that maximizes the right side - and this turns out to be easier. Note,
first ofall, that "p (surface)"- the overall probability ofa given surface -will be the
same for allvalues of "structure". This means that it can simply be disregarded. Thus

~crureP(structure Isurface) =~crureP(surface I structure) p(structure) (4)

Thus, to find the most probable structure given a particular surface, we need to

know - for every possible structure - the probability of the surface given the
structure, and the prior probability of the structure.

Two other points will be relevant in what follows. The probability of a surface
and a structure occurring in combination is

p (surface & structure) = p (surface I structure) p (structure) (5)

Note that the expression on the right is exactly what must be computed to find the
most probable structure given a surface (equation 4). Also of interest is the prior
probability of a surface, which sums the expression in equation 5 over all possible
structures:

p (surface) = L p (surface I structure) p (structure) (6)

The Bayesian approach has proven to be extremely useful in a number of areas
of cognitive modeling and information processing. An illustrative example is the
problem of speech recognition. In listening to speech, we are given a sequence of

177

 at UNIV OF ROCHESTER LIBRARY on December 1, 2015msx.sagepub.comDownloaded from 

http://msx.sagepub.com/


phonetic units - phones - and we need to determine the sequence of words that
the speaker intended. In this case, then, the sequence of phones is the surface and
the sequence of words is the structure. (Determining the sequence of phones that
was spoken is in itself a complex process, but we will not consider that here.) The
problem is that a single sequence of phones could result from many different words.
Consider the phone sequence [ni], as in "the knights who say 'Ni'", from Monty
Python and the Holy Grail (this example is taken wholesale from ]urafsky and
Martin, 2000). Various words can be pronounced [ni], under certain circumstances:
"new", "neat", "need", "knee", and even "the". (This may seem counterintuitive; it
is due to the fact that the pronunciation of words can vary greatly depending
on context. For example, in the phrase "neat little", the final "t" on "neat" may be
omitted, leaving [ni].) However, not all of these words are equally likely to be
pronounced [ni]. The probability of the pronunciation [nil given each word
(according to ]urafsky and Martin, based on analysis of a large corpus of spoken
text) is as follows:

new .36
neat .52
need .11
knee 1.00
the 0

This, then, is "p (surface I structure)" for each of the five words. (For all other words,
p(surface I structure) = 0.) In addition, however, some of the words are more
probable than others - the prior probability of each word (according to ]urafsky
and Martin) is

new .001
neat .00031
need .00056
knee .000024
the .046

This gives us "p(strucrure)" for each word. Taking the product of the two values for
each word gives

new .00036
neat .000068
need .000062
knee .000024
the 0
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The structure maximizing this value for the phone string [ni] - and hence the most
probable structure given that surface - is the word "new". Of course, this model
could be improved by the addition of other information. Most importantly, the
probability ofa given word depends greatly on the context: in the context "I scraped
my...", we expect "knee" much more than "new". Incorporating information of this
kind could give us a much better estimate of the prior probability of each word.

Bayesian modeling is also widely used in syntactic parsing (Charniak, 1996;
Manning and Schutze, 2000). The "structure" in this case can be defined as a
syntactic tree, down to a set of syntactic categories (noun, verb, etc.). For any
structure, the prior probability can be calculated from the combined probability of
all the syntactic expansions involved - S (sentence) expanding to NP (noun phrase)
+ VP (verb phrase), VP expanding to V (verb) + PP (prepositional phrase), etc.
The probability of the surface given the structure then depends on the probability
of each word given a certain syntactic category: for example. the probability of a
noun being "dog" (as opposed to "cat" or "mouse"). In this way we can calculate
both "p (structure)" and "p(surface I structure)" for each possible structure, and thus
determine the most likely structure given the surface.

A BAYESIAN MODEL OF KEY-FINDING

Consider the problem of key-finding: inferring the key of a piece from the notes.
Key-finding is a centrally important process in music cognition, one that has been
studied quite widely from both experimental and computational perspectives
(Longuet-Higgins and Steedman, 1971; Holtzmann, 1977; Bharucha, 1987; Butler,
1989; Krumhansl, 1990; Leman, 1995; Vos and Van Geenen, 1996). Aswith speech
recognition. inferring the "surface" - the notes of a piece - from sound input is
in itself a highly complex problem; we will simply assume that the notes have already
been identified. We will allow for the possibility of modulations - that is, the key
may change from one moment to the next. We will, however, assume a division of
the piece into segments - roughly corresponding to measures - such that the key
may change from one segment to the next, but not within segments. Thus a single
key must be chosen for each segment. (Let us overlook the complication of pivot
chords for now; a possible way of incorporating these will be considered later.)

Defined in this way.key-finding reflects a fundamental similarity to the processes
described above: the problem is to infer the most probable structure, given a surface.
In this case, the structure is a sequence of keys; the surface is a pattern of notes. To
solve this problem using the Bayesian method, we need to know - for all possible
structures - the probability of the structure itself and the probability of the surface
given the structure.

First consider the probability ofa structure itself: a labeling of each segment with
a key. We will assume that, for the initial segment of a piece, all 24 keys (12 major
and 12 minor) are equally probable. For subsequent segments, there is a high
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probability of remaining in the same key as the previous segment; swirching to

another key carries a lower probability.This captures the "inertia" of key: perceptually,
we tend to assume that the current key remains in force, unless there is strong
evidence to the contrary. (For example, a G major triad in the context of C major
will normally be heard as V of C rather than I of G.) Let us assume, for any segment
except the first, a probability of .8 of remaining in the same key as the previous
segment; this leaves a probability of .2 for moving to one of the other 23 keys (as
the probabilities of all possible outcomes must sum to 1), or a probability of
.2/23 = .0087 for each key. (We consider all key changes to be equally likely, though
this is undoubtedly an oversimplification; I discuss this further below.) The
probability of a complete key structure can then be calculated as the product of these
probabilities - we will call them "modulation scores" (Sm) - for all segments. For
a structure offour segments, C major - C major - C major - G major, the probability
will be

1/24 x .8 x .8 x .2/23 = .000232 (7)

The next task is to define the probability of a surface given a structure. This
problem could be solved in many different ways; I will propose one solution here,
and then consider other possibilities later on. Let us suppose. for the moment, that
the only information relevant to the key of a segment is the set of pitch-classes that
the segment contains. We further assume that, in each segment, the composer makes
twelve independent decisions as to whether or nor to use each pitch-class-. These
probabilities can be expressed in a twelve-valued vector - conventionally known as
a "key-profile". We could base these key-profiles on actual data as to how often each
pitch-class is used in segments of a particular key. Such data is shown in Figure 1 for
the Kostka-Payne corpus - a corpus of 46 excerpts from the common-practice
repertoire, taken from the workbook accompanying Stefan Kostka and Dorothy
Payne's textbook Tonal Harmony (1995)3. The workbook is accompanied by an
instructors' manual containing analyses by the authors, showing harmonic analyses
and modulations; thus data could be gathered on pitch-class distribution relative to

the local key - something that has not been possible in previous studies of this kind

(2) Bear in mind that what is being proposed here is not a model of c:omposition, but of

perception. That is, the suggestion is not that composers really do make twelve independent

decisions whether or not to include each pitch-dass in each segment - only that listeners assume

this for the purposes of key-finding.

(3) Segments were defined by metrical units, using the lowest (fastest) metrical level whose beats

were at least one second apart. (Tempi were chosen for each excerpt on an informal basls.) See

Temperley (2001) for further information about how the corpus was constructed.

The entire corpus contains 896 segments and 9748 notes. However, in cases where a segment

(or part of a segment) was analyzed as being in two keys simultaneously (e.g. a pivot chord), it was

c:ounted twice, once in each key; for this reason the actual number of segments counted was 955,

not 896.
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(Youngblood, 1958; Knopoff and Hutchinson, 1984). The data in Figure 1 is
collapsed over all major keys and all minor keys, so that the profiles represent pitch­
classesrelative to keys - scale degrees, essentially. As an example, scale degree 1 (the
tonic) occurs in .748 (74.8%) of segments in major keys; scale degree #4, by
contrast, occurs in only .096 (9.6%) of segments. The profiles reflect conventional
musical wisdom, much as we would expect. In both major and minor profiles, scalar
degrees have higher values than chromatic ones, and notes of the tonic triad score
higher than other notes of the scale. (One feature of the profiles worth noting is the
very strong presence of the harmonic minor scale, that is, the high frequency in
minor keys of the lowered sixth and raised seventh compared to the raised sixth and
lowered seventh.)?
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Figure 1.

Key-profiles for a Bayesian key-finding model, for meier keys (above) and minor keys (below).

The profiles are based on the frequency of occurrence of each scale-degree (relative to the

current key) in the Kostka-Payne corpus, for meior and minor keys. Profile values indicate the

proportion of segments in which each scale-degree occurred.

(4) Another noteworthy feature is that degree5 is more frequent than degree 1 in minor keys. This

is odd and unexpected, and suggests that the sample may not be large enough to represent

general practice accurately (though it is possible that this does represent general practice).

Repeating this tally with a larger samplewould certainly be worthwhile.
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The probability of a scale degree not occurring in a segment is, of course, 1 minus
the score in the profile: for scale degree 1 in major keys, 1-.748 = .252. For a given
key, the probability of a certain pitch-class set being used is then given by the
product of the key-profile values - we could call these "pc scores" (Spc) - for all
pitch-classes present in the segment (p), multiplied by the product of "absenr-pc"
scores (S~pc) for all pitch-classes not present (-p).

key-profile score =ITSpc ITS_pc
p -p

(8)

To find the most probable structure given a surface, we need to calculate
p (structure) p (surface I structure). This can be calculated, for an entire piece, as the
product of the modulation scores (Sm) and the key-profile scores for all segments (s):

p (structure) p (surface I structure) = IT (Sm nSpJ!s~pc) (9)
s p-p

A standard move in Bayesian modeling is to express such a formula in terms of
logarithms. (This is convenient simply because it avoids the tiny numbers that
result from multiplying many probabilities rogether.) Since the function In x is
monotonic, two values ofIn x will always have the same ranking of magnitude as the
corresponding values of x; if our only aim is to find the maximum value of x, then
using In x instead works just as well. The logarithm for the right side of equation 9
can be expressed as

L On Sm + L In Spc + L In S_pc)
s p -p

(10)

Now the score is a sum of segment scores; each segment score is itself the sum of a
modulation score, pc scores for present pc's, and absent-pc scores for absent pc's,

I have said how the probability of key structures can be calculated, but not
how the most probable key structure of a piece could actually be found. This is a
computationally non-trivial problem. Due to the modulation scores, the probability
of a key in one segment depends on the key of the previous segment. Thus, to find
the most probable key structure overall, the model must calculate the probabilities
of all complete analyses of the entire piece; and the number of these grows
exponentially with the number of segments. This problem, and similar problems
that arise with Bayesian models in other domains, can be solved using the technique
of dynamic programming (see ]urafsky and Martin, 2000; Temperley, 2001).
However, this is not our concern for now; let us simply assume that the model
considers all possible key structures, calculates their probabilities, and chooses the
most probable one.

Before proceeding further, we should examine some objections that might be
raised to the model just proposed. The model - construed as a model of human
cognition - assumes that key-finding operates primarily on information about the
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collection of pitch-classes in use, and is more or less indifferent to the way they are
arranged horizontally and vertically, (The model is also insensitive to the repetition
of pitch-classes within segments, though not across segments. That is to say, if
one pitch-class occurs many times in a passage and another occurs only once, this is
likely to affect the model, as the first pitch-class will occur in more segments than
the second.) This "statistical" aspect of the model might seem counterintuitive.
However, experiments in which the effect of pitch-class distribution is systematically
controlled (e.g. by using randomly-ordered melodies generated from key-profiles)
suggest that distributional information alone can, indeed, be a powerful cue to tonal
orientation (Oram and Cuddy, 1995; Smith and Schmuckler, 2000). The role of
pitch-class content in key-finding is also demonstrated anecdotally by so-called
"pan-diatonic" music, which uses a diatonic scale collection but in non-traditional
ways. A case in point is shown in Figure 2, the opening of Stravinsky's Sonata for
Two Pianos. This excerpt projects an unmistakable sense of an F major tonality
in mm, 1-4 modulating to C major in mm. 5-9, despite the general absence of
traditional structures of tonal harmony and voice-leading. This suggests that such
structures are not necessary to project a sense of tonality; pitch-class distribution
alone has surprising power as an indicator of key>,

Figure 2. StraVinsky, Sonata for Two Pianos, I, mm. 1-9.

(5) In Figure 2, one might point to the F major triad in the bass line in mm. 1-2 as a harmonic cue.

However, to explain the senseof modulation to C major in these terms is much more difficult. One

finds a C major triad outlined in m. 6; but E minor, G major, and F major triads are also present in

mm. 5-7 and at least as prominent. The top voice in m. 9 also outlines a C major triad, but the sense

of C major is established well before this.

To experiment with the tonal implications of melodies generated randomly from a key-profile,

visit the Melisma Melody Generator at www.link.cs.cmu.edu/melody-generator.
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While pitch-class content is unquestionably an important factor in key-finding,
it is not the only factor. Certainly, there are some cases where the arrangement of
pitches can affect their tonal implications. A simple example is shown in Figure 3,
proposed by David Butler (1989), in which the same pitches are arranged in two
different ways: Figure 3a strongly implies C major, whereas Figure 3b is more
ambiguous. I have suggested elsewhere (Temperley, 2001) that such phenomena
point to a role for harmonic structure in key-finding; the progression G7-C implies
C major much more strongly than E-F. In practice, however, consideration of
harmony appears to be necessary rather rarely. The computational tests presented
below provide further evidence as to the role of pitch-class content in key
determination, as well as other factors that may be involved.

Figure 3. The same pitches arranged differently can have different tonal implications.

One aspect of key is completely neglected by the model presented above: this is
its hierarchical aspect. A tonal piece generally has a single main key, but may have
secondary key sections within that, and perhaps lower-level tonicizations as well.
The model presented here cannot capture this multi-leveled structure, but simply
generates a single level of key sections. (It also knows nothing of the conventions
of key structure in common-practice music - in particular, the fact that the key
established at the beginning of a piece is likely to return at the end.) I will not
address this issue here, but leaveit as a problem for the future. It is generally assumed
that pieces have a basic, intermediate level of key - as indicated by modulations in
a Roman numeral analysis; it is this level that concerns us in the present study.

TESTING AND COMPARISON WITH OTHER MODELS

The Bayesian key-finding model proposed above has antecedents in two other
models of key-finding. The Krumhansl-Schmuckler (hereafter K-S) key-finding
algorithm, described most fully in Krumhansl (1990), is based on a set of key­
profiles representing the stability or compatibility of each pitch-class relative to each
key. (Table 1 shows the model's key-profile values for major and minor keys.) The
key-profilesare based on experiments in which subjects were played a musical context
such as a cadence or scale, followed by a pitch, and were asked to judge how well the
pitch "fit" given the context. A high value for a pitch-class in a given key-profile
means that the pitch-class was judged to fit well with that key. Given these profiles,
the model judges the key of a piece by generating an "input vector" for the piece;
this is, again, a twelve-valued vector, showing the total duration of each pitch-class
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in the piece. The correlation value, r, is then calculated between each key-profile
vector and the input vector, using the standard correlation formula:

L (x-x )(y-y)
r = -=----=-------,-

(L(x-x)2L(y-y)2)1/2
(11)

where x = input vector values;x= the averageof the input vector values;y = the key­
profile values for a given key; and y= the average key-profile value for that key.
The key whose profile yields the highest correlation value is the preferred key.

Table 1
Key-profiles for threedifferent key-finding models

K-S model CBMS model Bayesian model

Scale degree major minor major minor major minor

I 6.35 6.33 5.0 5.0 .748 .712

tllb2 2.23 2.68 2.0 2.0 .060 .084

2 3.48 3.52 3.5 3.5 .488 .474

~1b3 2.33 5.38 2.0 4.5 .082 .618

3 4.38 2.60 4.5 2.0 .670 .049

4 4.09 3.53 4.0 4.0 .460 .460

t41b5 2.52 2.54 2.0 2.0 .096 .105

5 5.19 4.75 4.5 4.5 .715 .747

#51b6 2.39 3.98 2.0 3.5 .104 .404

6 3.66 2.69 3.5 2.0 .366 .067

tGlb7 2.29 3.34 1.5 1.5 .057 .133

7 2.88 3.17 4.0 4.0 .400 .330

In Temperley (2001), I proposed an alternative model of key-finding (which I
will call the CBMS model) building on the proposal of Krumhansl and Schmuckler.
The original profiles seemed problematic in certain respects - particularly the
higher value for the lowered seventh as opposed to the leading-tone in the minor
profile - and some adjustments were proposed, leading to improved performance
(see Table 1). Another problem with the K-S model was that intensive repetition of
a pitch-class within a short time-span seemed to give too much weight to that pitch­
class. In Figure 4, for example, the repeated E's cause the K-S model to choose
E minor as the key, whereas C major would clearly be a better choice. To address
this, I argued that some kind of division of the input into small segments should be
assumed, and an input vector calc~lated for each segment, in which each pitch-class
gets a 1 if it is present and 0 if it is not. The match between the input profile and
the key-profiles is also calculated in a simpler way: For each key-profile, we take the
product of all input vector values with the corresponding key-profile values, and
sum these products. Since the input vector values are all 1 or 0, this simply amounts
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to adding the key-profile values for the pitch-classes that score 1 in the input vector.
The division of the piece into segments also allows the model to handle modulation
(which the original K-S model did not)», The CBMS model makes a key judgment
for each segment, but imposes a change penalty if the key for one segment differs
from the key for the previous segment. These penalties are then combined additively
with the key-profile scores to choose the best key for each segment.

Figure 4.

The three models just presented - the K-S model, the CBMS model, and the
Bayesian model - have much in common. All three of them are based on the
concept of key-profiles - an ideal pitch-class distribution for a key, to which the
actual pitch or pitch-class distribution of a piece is matched. The key-profiles used
in the three models are also quite similar, though there are some subtle differences,
as can be seen from Table 1. Figure 5 presents a simple musical example, showing
how the score for C major would be calculated by all three models". The CBMS
model and the Bayesian model are particularly similar. Both models involve a
division of the piece into segments; key judgments are made for each segment,
choosing the key whose profile best matches the pitch-classes in the segment and
also factoring in a penalty for key changes between segments. (In the Bayesian
model, this "penalty" is reflected in the fact that probability of remaining in the same
key is higher than the probability of modulating.) If we pretend that the key-profile
values and modulation penalties from the CBMS model are really logarithms of
other numbers, then the two models are virtually identical 8• There is one significant
difference: in the CBMS model, key scores are produced by summing the key­
profile scores for the pc's that are present; in the Bayesian model, we also add
"absenr-pc" scores for pes that are absent.

(6) There have been other proposals for extensions of the K-S model to handle modulation.

Krumhansl (1990) proposes mapping keys onto a four-dimensional space and then tracking the

movement of the piece across this space; see also Toiviainen and Krumhansl (2003). Huron and

Parncutt (1993) suggest an exponential decay model, in which the input vector is a weighted sum

of all previous events (see Temperley, 2001, pp. 198-201, for discussion).

(7) For the K-S model and the Bayesian model, the chosen key on Figure 5 is C major; for the

CBMS model, C major and F major are tied for first place.

(8) There are some superficial differences. Sincethe scores in the Bayesian model are all logarithms

of probabilities (numbers between 0 and 1), they will all be negative numbers. Also, the Bayesian

model adds modulation scores for all segments, not just modulating segments. These are simply

cosmetic differences which could be removed by scaling the values differently in the CBMS model,

without changing the results.
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Kmmbansl-Scbmuckler model

input vector = {.5, 0, .5, 0, .5, .25,0,0,0,0,0, O}
key-profile vector for C major = {6.35, 2.23, 3.48, 2.33, 4.38, 4.09, 2.52, 5.19, 2.39, 3.66,
2.29,2.88}
score for C major (correlation value) = 0.622

CBMSmodel

input vector = {I,O,I,O,I,I,O,O,O,O,O,O}
key-profile vector for C major = {5.0, 2.0, 3.5, 2.0,4.5,4.0,2.0,4.5,2.0,3.5,1.5, 4.0}
score for C major = 5.0 + 3.5 + 4.5 + 4.0 = 17.0

Bayesian model

input vector = {I, 0, I, 0, 1, I, 0, 0, 0, 0, 0, O}
key-profile vector for C major = {0.748, 0.060, 0.488, 0.082, 0.670, 0.460, 0.096, 0.715,
0.104,0.366,O.057,O.400}
score for C major = In ((0.748) Jl (1--0.060) x (0.488) x (1--0.082) x (0.670) x (0.460) x
(1-0.096) x (1-0.715) x (1--0.104) x (1-0.366) x 0-0.057) x (1-0.400)) =-4.82

Figure 5.

Sample calculations for three key-finding models. The calculations are for the key of C maior,

given the input shown below (treated as a single segment). Input vedors and key-profile

vectors show the values for the twelve pitch-classes (C, ct, D, ... B).

The three models were subjected to an empirical test, using the Kostka-Payne
corpus discussed earlier. (It may seem questionable to use this corpus for testing, as
it was also used for setting the parameters of the Bayesian model; I will return to this
issue.) The corpus contains 896 segments and a totalof 40 modulations (as indicated
by the authors' analyses). The output of the models was compared with the authors'
analyses; each model was simply scored on the proportion of segments that were
labeled correctly", (It was necessary to modify the K-S model somewhat, since the
original model has no mechanism for handling modulations. In this test, the K-S
model evaluates each segment independently using the correlation formula, and
imposes a change penalty for changes between segments.) With each model, different
values of the change penalty we're tried, and the value was used that yielded the best

(9) In cases where the correct analyses contained two keys in a segment (e.g. a pivot chord), half

a point was given to the model if its judgment corresponded with either "correct" key.

A computer program which implements all three of the key-finding models discussed here is

available at www.link.CS.cmu.edu/melisma; the Kostka-Payne corpus is also available there in MIDI

format.
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performance. Table 2 shows the results. The Bayesian model judged 86.5% of
segments correctly, slightly better than the CBMS model (83.8%) and significantly
better than the K-S model (67.0%). It seemed likely, however, that some of this
difference in performance was due simply to differences between the key-profiles.
For this reason, the same test was run using the Kostka-Payne profiles with all three
models. This improved the performance of the CBMS program to 86.3% and the
K-S model to 80.4%.

Table 2
Results on the Kostka-Payne corpus, for five different key-finding models

Model Optimal change penalty Percentage of segments correct

K-S model (using 2.3 67.0%
K-S profiles)

CBMS model (using 12.0 83.8%
CBMS profiles)

Bayesian model (using 0.998 86.5%
Kostka-Payne profiles)

K-S model (using 1.8 80.4%
Kostka-Payne profiles)

CBMS model (using 2.5 86.3%
Kostka-Payne profiles)

Note: For the K-S and CBMS models, the change penalty represents the penalty assigned to an

analysis for each change of key. For the Bayesian model, it represents the probability of remaining

in the same key; given a change penalty of 0.998, the probability of changing to any other key is

(1-0.998)/23 =0 0.00008.

The approach to testing used here - in which the Bayesian key-finding model
(and other models) are tested on the Kostka-Payne corpus, using parameters derived
from the same corpus - is problematic. Ideally, one would derive the model's
parameters from one corpus and then test it on another. This is difficult at present,
due to the small amount of encoded data available. (As emphasized earlier, it is
important to have data in which local keys are encoded, not merely the global
key of the piece.) One could train on part of the Kostka-Payne corpus and test on
another part, but this would result in an even smaller database for both training and
testing. The magnitude of this problem depends on how representative the scale
degree distribution of the Kostka-Payne corpus is of common-practice music
generally. If another corpus (call it corpus X) has virtually the same scale degree

distribution as the Kostka-Payne corpus, then training the model on corpus X
should produce virtually the same results (on any corpus) as training on the Kostka-
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Payne corpus. Further accumulation of data will be necessary to resolve this
question10.

Comparison of the output of the Bayesian model with the correct analyses
revealed several reasons for the model's errors. The most common source of error was
that the model's rate of modulation was either roo fast or roo slow: in some cases,
the model considered something a modulation where the human analysts had only
considered it a ronicization, or vice versa. In a few cases, it seemed likely that
considering harmonic information would help the model's performance. In
particular, the model had trouble with chromatic chords such as augmented sixths,
whose ronal implications contradict their pitch content; a rypical augmented-sixth
chord in C minor contains F#, which is normally foreign ro C minor. Considering
pitch-spelling information (e.g., the distinction berween Ab and G#) might also have
helped. With regard ro the CBMS model, it was found that introducing pitch­
spelling distinctions (so that, for example, E has a higher value in the C major profile
than Fb does) improved performance from 83.8% ro 87.4%; incorporating such
distinctions inro the Bayesian model might well yield a similar improvement. (Using
pitch-spelling as input might seem problematic, if we are trying ro model cognition;
but it is defensible ifwe suppose that pitch-spellings can be inferred based on context,
as proposed in Temperley [2001], and that this information is then available ro
influence key-finding.) In most cases, the model's errors were the same as those of
the CBMS model, whose performance on the Kostka-Payne corpus in discussed at
greater length in Temperley (2001).

The Bayesian perspecrive suggesrs several other ways that the model might be
improved. In the first place, one could set the change penalry systematically; according
ro the actual number of modulations in the Kostka-Payne corpus. Since the corpus
contains 40 modulations and 850 segmenrs (excluding the initial segment of each
excerpt), the probabiliry of a modulation should be 40/850 or .047. (By contrast,
the value of this parameter found ro be optimal through trial-and-error adjustment
was .002.) As an experiment, the change penalty was set ro reflect this, adding a
score of In(.047/23) for each modulating segment (assuming again that moves
ro any of the other 23 keys are equally likely), and In(l-.047) for non-modulating

(10) A further test was done using another corpus, consisting of 10 long (1 minute or more)

excerpts from common-practice pieces by a variety of composers, selected and analyzed into key

sections by the author. The profiles yielded were qualitatively similar to those of the Kostka-Payne

corpus, reflecting the same three-level hierarchy of chromatic, diatonic, and tonic-triad scale

degrees. When the profiles of this corpus were used as the parameters for the model, the model

labeled 84.9% of segments correct on the Kostka-Payne corpus (marginally lower than the rate

of 86.5% obtained using the Kostka-Payne parameters). This suggests that the test reported

previously was not greatly biased by the use of the same dataset for training and testing.

In an earlier publication (Temperley, 2002) I reported that the performance of the Bayesian key­

finding model (using the Kostka-Payne parameters) on the Kostka-Payne corpus was 77.1 %. This

was due to an error in the implementation that has now been corrected.
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segments. This produced a score of only 81.2% correct - somewhat less than the
Optimal performance of 86.5%. A second possible improvement would be [0 modify
the assumption that all keys are equally likely. Major keys are certainly more common
than minor keys; in the Kostka-Payne corpus, 70.0% of the segments are in major
keys. Thus it might be advantageous to give them a higher probability. However,
analysis of the Bayesian model's output showed that, even without a special preference
for major keys, the model was achieving almost exactly the right proportion of major
segments (70.1 %). This suggested that adding a preference for major keys was

unlikely to improve performance. Finally, one might consider attaching weights [0

different transitions between keys. When in C major, one is much more likely [0

move to G major than to (for example) F# major. This has not yet been attempted;
to construct such a model based on empirical values would require more data, as the
Kostka-Payne corpus itself provides only 40 modulations. (Of course, the model
could also be made more sophisticated by building in other information about key
structures, such as the fact that pieces are likely to end in the same key they began
in.)

Before continuing, we should examine one other possible approach to a Bayesian
model of key-finding. In the model above, a key-profile is treated, essentially, as
12 independent probability functions indicating the probability of each scale degree
occurring in a segment (and, thus, the probability of each pitch-class relative to each
key). This approach is not ideal, since it requires a prior segmentation of the piece;
there is little reason to think that such a segmentation is involved in human key­
finding. An alternative approach - simpler, in some ways - would be to treat each
key-profile as a single probability function (so that the 12 values of the profile would
sum to 1). This function could then be used to estimate the scale-degree probabilities
of an event given a certain key. Events could be treated as independent; the
probability of a note sequence given a key would then be given by the product of
the key-profile scores for all events - or, in logarithmic terms, the sum ofscores for
all events. This method resembles the "weighted-input" approach ofKrumhansl and
Schrnuckler's original model, discussed earlier, in which the input vector reflects the
number and duration of events of each pitch-class. The problem with this approach
has already been noted: it tends [0 give excessive weight to repeated events. Initial
tests of the key-profile model showed significantly better performance when
repetitions of a pitch-class within a segment were not counted. Thus it appears that
treating the key-profiles as probability functions for independent events is unlikely
to work very well. (Intuitively, in Figure 4, the weighted-input approach assumes a
generative model in which the composer decides to use C and G once, and then
makes eight independent decisions to use E. But a more plausible model is that the
composer decides to use certain pitch-classes, and then decides to repeat one of
them.) It is possible, however, that a more successful model could be developed
based on the "weighted-input" idea. One way would be to assume that a musical
surface is generated from a sparser, "reduced" representation of pitches, something
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like a middleground representation in a Schenkerian analysis. In such a representation,
immediate repetitions of pitches such as those in Figure 4 (and also perhaps octave
doublings and the like) would be removed. Possibly, a "weighted-input" model
applied to such a reduction would produce better results; it would also avoid the
arbitrary segmentation required by the CBMS and Bayesian models. Such an
approach would present serious methodological problems, however, since it would
require the middleground representation to be derived before key-finding could take
place.

While it has definite room for improvement, the Bayesian key-finding model
proposed here performs well enough to deserve serious consideration as a model of
human key-finding. Of course, having a computational model that performs a
process well does not prove that humans perform the process the same way. One way
of evaluating a computational cognitive model is by considering its implications and
explanatory value with respect to other aspects of cognition, beyond the problem it
was originally intended to solve. This will be my aim in the remaining sections of
this paper.

EsTIMATING THE PROBABILITY OF MUSICAL SURFACES

In terms of their key-finding performance, the differences between the three models
presented earlier are not large (when the same key-profiles are used for all models).
In several other respects, however, the Bayesian model has important advantages
over both the K-S and CBMS models!'. For one thing, the Bayesian model provides
a very natural way of measuring the probability of actual note patterns - what I
have called musical "surfaces". Returning to the earlier presentation of Bayesian
theory, the probability of a surface occurring in combination with a structure is
p (surface I structure) p (structure) (seeequation 5); the total probability of the surface
occurring is this quantity summed over all possible structures (equation 6). In terms
of the current model, the probability of a certain pitch-class set occurring within a
segment in a ronal piece is its probability in combination with a certain key,
summed over all keys (k). (Assume that this is the first segment of a piece, so there
is no modulation score; each key has a probability of 1/24.)

probability of pitch-class set = '5' (1/24) (IlSpJ1S_pc)
k p-p

(12)

Table 3 presents this data for certain well-known pitch-class sets. The table shows,
first, the prior probability of each set. It can be seen that, among three-pc sets, the

(11) This section and the following one build on ideas put forth in Temperley (2001) concerning the

use of preference rule systems to characterize musical tension, "tonalness", ambiguity, expectation,

styles, and stylistic differences. However, the Bayesian framework makes possible a more rational

and effective solution to these problems than what was proposed there.
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major and minor triad have a higher probability than the diminished triad, which
in turn has higher probability than C-C#-D. No doubt this is because the major
and minor triad are highly probable in combination with certain keys, i.e. keys in
which they are diatonic triads (and the tonic triad in particular). By contrast, the set
C-C#-D is not particularly probable given any key, as it will always contain at least
one chromatic note. This is made clear by the second column, which shows the
probability of each set in combination with its most probable key. Notice that the
prior probability figures in Table 3 tell us only the probability of one particular
transposition of each set: e.g., C-E-G. The probability of a Tn set-class- e.g., major
triads in general - would be given by the probability of one form, multiplied by
the number of distinct transpositions; this is shown in the rightmost column of
Table 3. In the case of the major triad, the total probability is .00173 x 12; in the
case of the augmented triad, it is .00079 x 4, since there are only four distinct
augmented triads. Among scale collections, the seven-note diatonic scale is much
more probable than the six-note whole-tone scale, the eight-note octatonic scale, or
the chromatic heptachord [0123456]. These distinctions hold true whether one
considers the probability of a single transposition of the set or the probability of all
transpositions.

Essentially, the numbers in Table 3 tell us the probability of different pitch-class
sets occurring (within a short span of time) in a piece - specifically, a tonal piece,
a piece using the musical language from which the current key-profiles were
generated. To put it a slightly different way, they tell us how characteristic each
pitch-class set is of the language of common-practice tonality - how tonal the set
is, one might say. Certainly, we are capable of making such judgments as listeners.
If we turn on the radio and hear a diatonic scale, we are likely ro suspect that
the piece is tonal; if we hear [0123456], our estimate of that probability will be
significantly less (though one must also take into account the extremely low prior
probability of hearing a non-tonal piece on the radio!). Of course, this would
depend on the way the pitches were arranged; no doubt the set [0123456] could be
compositionally realized in such a way as to sound unproblematically tonal. There
is more to tonality, and judgments of tonality, than sheer pitch-class content. But
the pitch-class content of a passage surely contributes to its tonalness, and this aspect
of tonality appears to be captured rather well by the Bayesian modelt-.

(12) It should be noted that neither the K-S model nor the CBMS model appearsto yield judgments

of the probability of a surface in any straightforward way. In the Bayesian model, the probability of

a segment can be measured (approximately) by the model's score for the highest-scoring key,

or (precisely) by the sum of scores for all keys. Neither of these measures appears to be very

meaningful for either the K-S or the CBMS model. In the CBMS model, the score for a particular

key increases with the number of pitch-classes in the segment (no scores are factored in for pitch­

classes not present in the segment); if scores were construed as probabilities, the most probable

segment would be the one containing all twelve pitch-classes, which is clearly incorrect. In the

K-S model, the problem is that the input vector values - representing the duration of each pitch-
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Table 3
Probabilities for certain pitch-class sets as estimated by

the Bayesian key-finding model

Pitch-class set Total ("prior") Probability of Number Total

probability set combined of distincr probability of

of set with most transpositions Tn set-class
probable key of set in

r, set-class

C-E-G (major triad) 0.00173 0.00103 12 .02080
(C)

C-Eb-G (minor triad) 0.00178 0.00098 12 .02137
(Cm)

C-Eb-Gb (dim. triad) 0.00031 0.00004 12 .00382
(Bbm)

C-E-G. (aug.triad) 0.00079 0.00019 4 .00318
(Obm")

C-C....O (012) 0.00022 0.00002 12 .00261
(Gm)

C-O-E-Ft-Ab-Bb 0,00001 0.000001 2 .00002
(whole-tone set) (Gm")

C-D-E-F-G-A-B 0.00049 0.00032 12 .00590
(diatonic set) (C)

C-D-Eb-F-Gb-Ab-A-B 0.000004 0.0000007 3 .00001
(octaronic set) (Ebm")

C-Q-D-Eb-E-F-F. 0.000006 0.000001 12 .00007
(0123456) (Ob)

total aggregate 0.00000003 0.000000002 I .000000003
(Cm")

• Symmetrical sets (such asthe augmented triad, whole-tone scale, octatonicscale, and aggregate)

yieldequal probability judgments for multiplekeys; in this case the modelmakes anarbitrary decision.

One might wonder if this approach could be applied to longer musical passages.
To estimate the probability of a note pattern spanning multiple segments, one

class in a passage - are normalized to have a variance of 1. Consider a hypothetical passage,

passage A, in which all pitch-classes of the C major scale are used equallyoften, and no othersare

used at all; consider also passage B, in which all twelve pitch-classes are used, but pitch-classes

within the C major scale areused very slightly (say 1%) moreoften than chromatic ones. Passage A

is clearly moretonal (and more probable) than Passage B, but due to the normalization of the input

vector values, the two passages would be treated asequivalentby the K-S model. The K-S model

may sometimes yield lower key scores (correlation values) for less tonal pieces; indeed, Krumhansl

(1990) found this to be true in an analysis of a Schonberg piece. But this is not a reliable measure,

for the reason just stated.
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must calculate its probability in combination with all possible analyses of the
passage (all ways of combining segment analyses) all summed rogether 13• Such
calculations do not emerge vety naturally out of the framework of the current
model, nor does it seem very likely that human listeners perform them. An alternative
approach would be to rake the probability of a passage in combination with its most
likely analysis as representative of the prior probability of the passage. This latter
measure might acrually be a fairly close approximation to the actual probability,
especially if the most likely analysis is far more probable than any other.

With this assumption in mind, consider the kinds of passages that would
be judged as probable by the model. A high-scoring passage would be one for
which the value p (surface I structure) p (structure) is high, for some structure. For
p (surface I structure) to be high, there must be some sequence of keys such that the
key of each segment is relatively compatible with the pitches of the segment. For
p (structure) to be high, the number of modulations must be relatively low. Consider
an excerpt consisting of an alternating panern of C major and G major triads (each
one occupying a segment). In this case, a key analysis which maintains C major
throughout allows good compatibility between the key of each segment and the
pitches, and also avoids modulations. Now imagine a series of segments consisting
ofalternating C major and F# major triads. In this case, the model would either have
to incorporate all of the segments within a single key, such as C major. in which case
the F# major segments would have a low probability, or it would have to alternate
keys at each segment, in which case the probability of the structure would be low.
Neither of these analyses would be especially high-scoring, thus the probability of
the passage as a whole would be judged as relatively low. A passage which contained
many chromatic pitch-class sets - so that no compatible key could be found even
for individual segments - would be assigned a low probability also.

A model such as this might yield revealing judgments, nor only of the "ronalness"
of an entire piece, but of fluctuations in ronalness within pieces. Consider Figure 6,
the first movement (excluding the six-measure introduction) of Schumann's
Papillons. The model's preferred analysis here is to retain D major throughout. The
model's judgment of the probability of each segment of the passage (treating
measures as segments), in combination with its preferred analysis, is shown in
Figure 7 (note that in this case a logarithmic scale is used). Relatively speaking, the
first eight measures and last four measures are quite probable; however, the intense
chromaticism of the third four-measure phrase leads to much lower probability
values. That is to say, the probability of the pitch-class sets in mm. 15-18, given
D major, is relatively low, and no other more preferable analysis is available. The
model could also have chosen to modulate to Ab major in rom. 15-16 and then back
to D major, but this would have carried low probability as well due to the two
modulations in quick succession'<.

(13) This approach is analogous to that taken in computational linguistics. For example, the

probability of a certain word sequence can be estimated by summing the probabilities of that
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Figure 6. Schumann, Papillons, I, mm. 7-22.
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Figure 7.

The model's probabilistic analysis of the first movement of Schumann's Papillons (the score of

which is shown in Figure 6). The graph shows, for each measure, the probability of the pitch­

class set in combination with its most likely key analysis.

(sequence arising from all different possible syntactic structures (Charniak, 1994, p. 75).

(14) Such a model should really take into account that some key transitions are less likely than

others, as already suggested with regard to key-finding. This would have the desirable consequence

that a move from D major to Ab major would be rated as less probable - hence, more "tense" ­

than a move from D major to A major.
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I submit that these probabilistic scores relate in an interesting way to musical
perception and experience - though it is not exactly clear what dimension of
musical experience they correspond to most closely. I suggested earlier that they have
something to do with judgments of "tonalness": a kind of grammaticality or
normality within the common-practice language. They also have something to do
with tension: a passage of low probability is likely to have an effect of tension and
instability. This may be because it suggests a failure in communication: if the
passage (as we analyze it) is improbable, this suggests that we may be misanalyzing
it - misunderstanding the structure, or even misperceiving the notes. (It may also
indicate that our model is incorrect - the key-profiles we were assuming are not the
correct ones.) Of course - to reiterate my earlier caveat - the musical tension of
a passage is more than just a simple function of its pitch-class content; all kinds of
harmonic, melodic, and rhythmic factors undoubtedly play a role. Yet pitch-class
content surely plays some role in tension; generally speaking, passages with lots of
chromaticism and rapid modulations tend to sound tense and unstable (at least in a
common-practice context), no matter how the pitches are arranged. What I am
suggesting is that this aspect of the tension of a passage appears to correspond well
with its probability, as judged by the current model. We should note also that
this proposed correlate to tension is simply an emergent feature of a model that was
proposed for quite a different purpose: modeling judgments of key. The tension of
a passage, under the current hypothesis, is given by the maximal value of p (surface I
strucrurelp (structure); but this must be computed anyway (if the Bayesian key­
finding model is correct), for all possible structures, in order to find the preferred
structure.

A further aspect of musical experience that is modeled quite naturally by the
current model is ambiguity. In some cases, a passage may be ambiguous with regard
to key: two or more keys may be roughly equal in probability. Note that this is a
separate issue from the probability of the passage itself. A passage may be highly
probable in terms of its pitch-class content, but still somewhat ambiguous with
regard to key. (It is also possible in theory for a passage to be highly improbable, yet
clear in terms of key; this is more difficult to imagine, since the kinds of phenomena
which lead to low-probability surfaces - chromaticism and rapid modulation ­
also tend to obscure the key.) Consider a passage such as the opening of Chopin's
Mazurka Op. 24 No.2 (Figure 8). The passage is fully diatonic with respect to two
keys, C major and G major, and therefore would have a fairly high probability of
occurring given either key; thus the probability of the passage itself should be high.
However, it is unclear to the model (and also, I would suggest, to the listener) which
key is correcr. This is reflected simply in the fact that two analyses of the passage ­
one with C major throughout and the other with G major throughout - are
roughly equal in probability. Another frequent site of key ambiguity is pivot chords
- segments occurring at the boundary between two key sections, and compatible
with either the previous key or the following one. In the current framework, these
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would (or at least should) be analyzed as segments in which the previous and
following keys are roughly equal in probability.

Figure 8. Chopin, Mazurka Op. 24 No.2, mm. 1-4.

The Bayesian perspective on key perception is also relevant to expectation. I have
suggested that the estimation of probabilities of musical surfaces is an important
pan of musical experience, allowing us to judge the "ronalness" of musical passages
and perhaps affecting our understanding of musical tension as well. But in hearing
a piece, we are not only analyzing what we have heard but also making predictions
of what will happen next. The same probabilistic model that is used to judge the
probability of heard music could also be used to generate predictions of future
events: the expected event in a melody is, presumably, the one that is judged most
probable'}, In terms of key, the Bayesian model predicts that we would expect a
continuation that is highly probable given the current key (we normally expect
the current key to be continued, since key changes are improbable) - roughly
speaking, one adhering to the current diatonic scale. This seems plausible; in
hearing a melody, for example, we generally expect the next note to remain within
the currently-established scale, though certainly other kinds of constraints are
involved as well. This has also been demonstrated experimentally; Schmuckler
(1989) found that expected melodic continuations were highly correlated with pitch
stability as predicted by the Krumhansl-Kessler profiles.

MODEUNG OTHER KINDS OF MUSICAL STRUCTURE

It was noted above that the Bayesian model of key-finding presented here has a
strong resemblance to the model of key-finding put forth in Temperley (2001) ­
what I have called the CBMS model. The CBMS model was originally presented as
a preference rule system. A preference rule system is a model involving a set of
criteria or "preference rules"; many analyses are considered, and the one is chosen
which best satisfies the rules. Preference rule models have been proposed for a

(15) Here again, there are questions about how exactly this would be quantified. Strictly speaking,

the probability of a surface continuation would be given by its probability summed over all

possible analysesof the current surface combined with all possible analysesof the prior context, but

this may be neither computationally feasible nor psychologically plausible.
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variety of aspects of musical perception, including metrical analysis, grouping
analysis, pitch reduction, harmonic analysis, and stream segregation (Lerdahl and
]ackendoff, 1983, Temperley, 2001). In the case of the CBMS key-finding model,
just two rules are involved:

- Key-Profile Rule. Prefer to choose a key for each segment which is compatible with
the pitches of the segment (according to the key-profiles).

- Modulation Rule: Prefer to minimize the number of key changes.

It appears, in fact, that preference rule models generally have a close connection to
Bayesian models. In the approach ofTemperley (2001), preference rule systems are
quantified by having each preference rule assign numerical scores to each analysis
indicating how "good" it is; these scores are summed, with the highest-scoring
analysis overall being the preferred one. This has much in common with the scoring
process proposed earlier for the Bayesian key-finding model, where the score for an
analysis is the sum of terms representing logarithms of probabilities. This is not to
say that the models in Temperley (2001) could be construed, exactly as they are, as
Bayesian models; some modifications would be needed in evety case. But there is
certainly a strong affinity between the two approaches. One insight yielded by a
Bayesian view of preference rule systems is that preference rules really fall into two
categories. Some rules relate to the probability of a certain strucrure; we could call
these "structure rules". Others relate to the probability of a surface given a structure;
we could call these "srrucrure-to-surface rules". In the case of the CBMS key-finding
model, the Modulation Rule is a structure rule; the Key-Profile Rule is a structure­
to-surface rule.

Another situation where Bayesian modeling appears to apply very naturally is
metrical analysis. A preference rule system for metrical analysis was proposed in
Temperley (2001) (see also Temperley and Sleator, 1999), building on the earlier
model of Lerdahl and ]ackendoff (1983). In this case, the structure is a row of beats
(or a framework of levelsof beats, but we will consider just a single metrical level for
now), and the surface is once again a pattern of notes. The model involves three
main rules:

- Event Rule: Prefer for beats to coincide with event-onsets.

- Length Rule: Prefer for beats to coincide with longer events.

- Regularity Rule: Prefer for beats to be roughly evenly spaced.

The process of deriving a row of beats involves optimizing over these three rules:
choosing the metrical level which aligns beats with as many events as possible,
especially long events, while maximizing the regularity of beats. The model in
Temperley (2001) evaluates a possible analysis by assigning it scores from each of
these three rules and summing these scores. It can be seen how a model of this kind
could be reconstrued as a Bayesian model, much as we have reinterpreted the CBMS
key-finding model in Bayesian terms. In this case, then, the Regularity Rule is
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a structure rule, indicating the probability of structures (more regular structures
are more probable); the Event Rule and Length Rule are structure-to-surface rules,

indicating the probability of surface patterns given a certain structure (patterns
are more probable that align events with beats, especially longer events). Such a
model could incorporate multi-leveled metrical structures as well, under the
assumption that events on lower-level beats are less probable than events on higher­
level beats.

Another Bayesian model of meter-finding - superficially different from

the CBMS model, but fundamentally similar - has been proposed by Cemgil et

al. (2000a, 2000b). In this model, the problem is defined as the recovery ofa score
from a performance; a score is a representation of events in terms of integer

values, essentially indicating their positions in some kind of metrical grid, and a
performance is an actual pattern of events in time. The most likely score given a
performance is the one maximizing the expression p (score) p (performance I
score). In this case, the goodness of the rhythmic panern itself (the alignment of
events with strong beats, etc.) is reflected in p(score); the goodness of the realization
of the pattern (i.e. the regularity of the actual performed beat) is reflected in
p (performance I score). In Cemgil's model, the complexity of a score is judged by
its "depth" - essentially, the number of merrical levels required to notate it; a
notation requiring sixteenth-notes is deeper, hence less probable, than one requiring
only quarter-notes.

A further area where the Bayesian perspective seems relevant is what might be
called "melodic structure" - the principles whereby melodies are constructed and
perceived. At issue here are not harmonic and tonal principles, but rather maners
such as melodic shape, range, and interval size. A good deal of work has been
done on the principles governing melodic expectation, leading to quite powerful
quantitative models of experimental data (Narmour, 1990; Schellenberg, 1997).
Meanwhile, other research has focused on statistical analysis of musical corpora,
seeking to identify regularities in the way melodies are constructed (von Hippel
and Huron, 2000; von Hippel, 2000). Both in perceptual and compositional
research, an important principle that emerges is pitch proximity: the
compositional preponderance of, and perceptual expectation for, small melodic
intervals as opposed to large ones. As argued in Temperley (2001) (following
Bregman [1990] and other psychological research), the principle of pitch proximity
is also an important aspect of what I have called "contrapuntal analysis" - the
process of grouping notes into contrapuntal lines: we prefer to group notes into
lines such that intervals within lines are small. (In this case the surface is, as usual,
a pattern of notes; the structure is a pattern of lines implied by those notes.) Here,
then, is a situation analogous to what was observed in key-finding and meter­

finding: a single probabilistic principle - the preference for small intervals within
melodic lines - is reflected in composition (the preponderance of small intervals
in musical corpora), perception (the tendency to group notes into lines such that
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intervals are small), and expectation (the higher expectation for small intervals as
opposed to large ones)16.

An intriguing prospect suggested by the Bayesian approach is the possibility of
quantifying differences in musical structure across styles. One example was suggested
in Ternperley (2001), relating to metrical structure: the complementary relationship
between rubaro and syncopation. In general, styles allowing a lot of fluctuation in
tempo - such as common-practice music, particularly of the Romantic period ­
tend to have little syncopation; in styles allowing great syncopation, such as
traditional sub-Saharan African music and rock, the pulse tends to be extremely
regular. These differences could be quantified in terms of the parameters of a
Bayesian model. The tolerance for rubato in a style would be reflected in the degree
to which irregular beat panerns were assigned lower probabilities; the tolerance for
syncopation would be reflected in the degree to which syncopated note panerns
(given a certain beat pattern) were assigned lower probabilities. A Bayesian model of
this kind might allow for the quantitative characterization or categorization of
actual musical surfaces; if a musical surface was assigned a higher probability
estimate by the common-practice model as opposed to the rock model, this would
mean it was more likely to be a common-practice piece. It would also raise questions
about perception: if different styles reflect different probabilistic parameters (the
tolerance for rubato and the tolerance for syncopation), are these differences
assimilated by listeners as well, so that African and Western listeners might possess
different perceptual models and thus might assign different analyses to the same
piece? Finally, this perspective raises the possibility that there may be systematic
relationships between different aspects of musical styles. It is surely no coincidence
that styles with rubaro generally tend to have low syncopation; if a piece had both
high rubato and high syncopation, inference of the beat might be impossible. The
need to convey certain kinds of information, coupled with the probabilistic nature
of the perceptual process, may act as an important constraint on the evolution of
musical styles.

CONCLUSIONS

In this essay I have pointed to a number of reasons why a Bayesian approach to

musical modeling is attractive and promising. The Bayesian approach embraces, or
at least connects strongly with, a good deal of work that has already been done
within the preference-rule framework towards modeling the perception of key,
meter, and other aspects of musical structure, yet it also provides the preference-rule

(16) Also worthy of mention here is Bod's model of melodic segmentation (2002). Bod's model is

based on statistical data regarding pitch patterns within phrases and the number of phrases in a

melody; this data is used to select the most probable phrase structure given a melody. This could

be regarded as a simple Bayesian model, though Bod does not present it in those terms.
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approach with a more rational foundation than has been available before. Bayesian
models provide the basis for a quantitative and systematic, yet musically informed,
investigation into the probabilistic aspect of musical communication - as called
for by Meyer in the 1950's. The approach leads to interesting ways of modeling
musical tension, tonalness, ambiguity, and expectation, as well as describing stylistic
differences (both in music and in listeners). Equally significant, this approach
establishes an important connection between music cognition and other branches
of cognitive science where Bayesian modeling is used (such as computational
linguistics) - a connection which in turn holds out exciting prospects for the
sharing of ideas between fields and the identification of cross-domain generalities
about cognition'?

(17) Address for correspondence:

David Temperley

Eastman School of Music

26 Gibbs St.

Rochester, NY, 14607, USA

tel.: 585-274-1557

e-mail: dtemp@theory.esm.rochester.edu
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• Modelos Bayesianos de la estructura y cognlclen musical

Esta comunicaci6n revisa la aplicaci6n del modele probabilistico Bayesiano a las

cuestiones de cognici6n y teoria musicales. La cuesti6n principal tiene que ver can

el problema de encontrar la nota principal: el proceso de deducci6n de la nota

principal de un motivo. La perspectiva bayesiana conduce a un modele de este

proceso simple, elegante y altamente efectivo; la misma aproximaci6n se puede

aplicar a otros aspectos de la percepci6n musical, como las estructuras rnetnca y

mel6dica. Los modelos bayesianos aportan tambien soludones interesantes para

otras cuestiones musicales, incluyendo tension musical, arnblguedad, expectaci6n,

y las descripciones cuantitativas de estilos y diferencias estilisticas.

• Modelli bayesiani di struttura e cognizione musicale

II presente articolo studia l'appiicazione del modello probabilistico bayesiano a

questioni di cognizione e teoria musicale. Esso si concentra sui problema di

"trovare la tonalita", vale a dire iI processo mediante il quale si stabilisce la

tonallta a partire da una sequenza di note. Laprospettiva bayesianaconduce ad un

rnodello sernplice, elegante ed assai efficace per tale processo; 10 stessomodello si

puc estendere anche ad altri aspetti della percezione musicale, quali la struttura

metrica e la struttura melodica. La modellazione bayesiana si assoda altresi in

modo interessante a molti altri aspetti della rnusica, ivi cornprese tensione,

arnbigutta, attese musicali, nonche la descrizione quantitativa di stili e differenze

stilistiche.

• Modeles bayeslens de la structure et de la cognition musicales

On etudie ici I'application de la modelisation probabiliste de Bayes aux domaines

de la cognition et de la theorie musicales. Celle-ci s'avere surtout interessante dans

I'etabbssernent de la tonalite: Ie processus par lequel la tonalite est interee a
partir d'un pattern de notes. Elle conduit a un modele simple, elegant et

extrernernent efficace de ce processus; la merne approche peut etre etendue a
d'autres aspects de la perception musicale, par exemple les structures rnetrtque et

rnelodique. Enfin, elle se revele tres interessante aussi s'agissant de notions comme

la tension, l'arnbigutte, I'attente et la description quantitative des styles et des

differences stylistiques.

• Bayes-Modellierung musikalischer Struktur und Kognition

In diesem Beitrag werden Wahrscheinlichkeitsmodellierungen nach Bayes auf ihre

Anwendbarkeit fur Musikkognition und Musiktheorie hin uberpruft, Das

Hauptinteresse ist die Erkennung von Tonarten, also der Prozess, aus verschiedenen

Tbnen eine Tonart zu ermitteln. Der bayes'sche Ansatz fOhrt zu einem einfachen,
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eleganten und sinnvollen Model dieses Prozesses. Der gleiche Ansatz kann auch

auf andere Aspekte der musikalischen Wahrnehmung erweitert werden, wie

beispielsweise auf die metrische und die melodische Struktur. Die Modellierung

verweist ebenfalls auf andere musikalische Themen wie musikalische Spannung,

Doppeldeutigkeiten, Erwartungen sowie quantitative Beschreibungen von 5tilen

und stilistischen Unterschieden.
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